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Broadly speaking, nineteenth century statistics was Bayesian, while the twentieth century was frequentist, at least from the point of view
of most scientific practitioners. Here in the twenty-first century scientists are bringing statisticians much bigger problems to solve, often
comprising millions of data points and thousands of parameters. Which statistical philosophy will dominate practice? My guess, backed up
with some recent examples, is that a combination of Bayesian and frequentist ideas will be needed to deal with our increasingly intense
scientific environment. This will be a challenging period for statisticians, both applied and theoretical, but it also opens the opportunity
for a new golden age, rivaling that of Fisher, Neyman, and the other giants of the early 1900s. What follows is the text of the 164th ASA
presidential address, delivered at the awards ceremony in Toronto on August 10, 2004.
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Two Septembers ago, there was a conference of particle
physicists and statisticians at Stanford, called phystat2003.
I gave a talk at phystat2003 titled “Bayesians, Frequentists, and
Physicists.” Earlier that year I’d spoken to a meeting of bio-
medical researchers at the “Hutch” in Seattle, under the title
“Bayesians, Frequentists, and Microbiologists.” These weren’t
the same lectures, and both were different than tonight’s talk,
but you can see that I’ve gotten stuck on a naming scheme. You
might worry that this has gotten out of hand, and next week it
might be almost anything else that ends in “ists.” But no, there
is a plan here: The common theme I’ve been stuck on, and what
I want to talk about tonight, is the impact of statistics on modern
science and also the impact of modern science on statistics.

Statisticians, by the nature of our profession, tend to be crit-
ical thinkers, and that includes a big dose of self-criticism. It is
easy to think of statistics as a small struggling field, but that’s
not at all what the historical record shows. Starting from just
about zero in 1900, statistics has grown steadily in numbers
and, more importantly, in intellectual influence. The growth
process has accelerated in the past few decades as science has
moved into areas where random noise is endemic and efficient
inference is crucial.

It’s hard to imagine phystat1903, back when physicists
scorned statistical methods as appropriate only for soft noisy
fields like the social sciences. But physicists have their own
problems with noise these days, as they try to answer questions
where data are really thin on the ground. The example of great-
est interest at phystat2003 concerned the mass of the neutrino,
a famously elusive particle that is much lighter than an electron
and may weigh almost nothing at all.

The physicists’ trouble was that the best unbiased estimate
of the neutrino mass was negative, about −1 on a scale with
unit standard error. The mass itself can’t be negative of course,
and these days they’re pretty sure it’s not zero. They wished to
establish an upper bound for the mass, the smaller the better
from the point of view of further experimentation. As a result,
the particle physics literature now contains a healthy debate
on Bayesian versus frequentist ways of setting the bound. The
current favorite is a likelihood ratio-based system of one-sided
confidence intervals.

The physicists I talked with were really bothered by our
250-year-old Bayesian–frequentist argument. Basically, there’s
only one way of doing physics, but there seems to be at least
two ways to do statistics, and they don’t always give the same
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answers. This says something about the special nature of our
field. Most scientists study some aspect of nature: rocks, stars,
particles. We study scientists, or at least scientific data. Statis-
tics is an information science, the first and most fully developed
information science. Maybe it’s not surprising then that there is
more than one way to think about an abstract subject like “in-
formation.”

The Bayesian–frequentist debate reflects two different atti-
tudes about the process of doing science, both quite legitimate.
Bayesian statistics is well suited to individual researchers, or
a research group, trying to use all of the information at its
disposal to make the quickest possible progress. In pursuing
progress, Bayesians tend to be aggressive and optimistic with
their modeling assumptions. Frequentist statisticians are more
cautious and defensive. One definition says that a frequentist is
a Bayesian trying to do well, or at least not too badly, against
any possible prior distribution. The frequentist aims for uni-
versally acceptable conclusions, ones that will stand up to ad-
versarial scrutiny. The FDA, for example, doesn’t care about
Pfizer’s prior opinion of how well it’s new drug will work,
it wants objective proof. Pfizer, on the other hand, may care
very much about its own opinions in planning future drug
development.

Bayesians excel at combining information from different
sources, “coherence” being the technical word for correct com-
bination. On the other hand, a common frequentist tactic is to
pull problems apart, focusing, for the sake of objectivity, on a
subset of the data that can be analyzed optimally. I’ll give ex-
amples of both tactics soon.

Broadly speaking, Bayesian statistics dominated nineteenth
century statistical practice, while the twentieth century was
more frequentist. What’s going to happen in the twenty-first
century? One thing that’s already happening is that scientists
are bringing statisticians much bigger datasets to analyze, with
millions of data points and thousands of parameters to consider
all at once. Microarrays, the thing I was talking about to the
microbiologists in Seattle, are the poster boy for scientific gi-
ganticism.

Classical statistics was fashioned for small problems, a few
hundred data points at most and a few parameters. Some new
thinking is definitely called for on our part. I strongly suspect
that statistics is in for a burst of new theory and methodol-
ogy, and that this burst will feature a combination of Bayesian
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and frequentist reasoning. Tonight I’m going to argue that in
some ways, huge datasets are actually easier to handle for both
schools of thought.

Here’s a real-life example I used to illustrate Bayesian virtues
to the physicists. A physicist friend of mine and her husband
found out, thanks to the miracle of sonograms, that they were
going to have twin boys. One day at breakfast in the student
union, she suddenly asked me what was the probability that
the twins would be identical rather than fraternal. This seemed
like a tough question, especially at breakfast. Stalling for time,
I asked whether the doctor had given her any more informa-
tion. “Yes,” she said, “he told me that the proportion of identi-
cal twins was one-third.” This is the population proportion, of
course, and my friend wanted to know the probability that her
twins would be identical.

Bayes would have lived in vain if I didn’t answer my friend
using Bayes’s rule. According to the doctor, the prior odds ra-
tio of identical twins to nonidentical twins is one-third to two-
thirds, or one-half. Because identical twins are always the same
sex but fraternal twins are random, the likelihood ratio for see-
ing “both boys” in the sonogram is a factor of two in favor of
identical twins. Bayes’s rule says to multiply the prior odds by
the likelihood ratio to get the current odds; in this case 1/2
times 2 equals 1, or in other words, equal odds on identical
or nonidentical given the sonogram results. So I told my friend
that her odds were 50–50 (wishing the answer had come out
something else, like 63–37, to make me seem more clever). In-
cidentally, the twins are a couple of years old now and “couldn’t
be more nonidentical,” according to their mom.

Now Bayes rule is a very attractive way of reasoning, and
fun to use, but using Bayes rule doesn’t make one a Bayesian.
Always using Bayes rule does, and that’s where the practical
difficulties begin. The kind of expert opinion that gave us the
prior odds one-third to two-thirds usually doesn’t exist, or may
be controversial or even wrong. The likelihood ratio can cause
troubles too. Typically the numerator is easy enough, being the
probability of seeing the data at hand given our theory of in-
terest, but the denominator refers to probabilities under other
theories, which may not be clearly defined in our minds. This is
why Bayesians have to be such aggressive math modelers. Fre-
quentism took center stage in the twentieth century to avoid all
of this model specification.

Figure 1 concerns a more typical scientific inference prob-
lem, of the sort that is almost always handled frequentistically
these days. It involves a breast cancer study that attracted na-
tional attention when it appeared in the New England Journal of
Medicine in 2001. Dr. Hedenfalk and his associates were study-
ing two genetic mutations that each lead to increased breast

Figure 1. Expression Data for the First of 3,226 Genes, Microarray
Study of Breast Cancer (Hedenfalk et al. 2001).

cancer risk, called BRCA1 and BRCA2 by geneticists. These
are different mutations on different chromesomes. Hedenfalk
et al. (2001) wondered whether the tumors resulting from the
two different mutations were themselves genetically different.

To answer this question, Hedenfalk et al. (2001) took tumor
material from 15 breast cancer patients, 7 from women with
the BRCA1 mutation and 8 from women with BRCA2. A sep-
arate microarray was developed for each of the 15 tumors, with
each microarray having the same 3,226 genes. Here we see the
data only for the first gene: seven genetic activity numbers for
the BRCA1 cases and eight activity numbers for the BRCA2
cases. These numbers don’t have much meaning individually,
even for microbiologists, but they can be compared with each
other statistically. The question of interest is whether the ex-
pression levels are different for BRCA1 and BRCA2. It looks
like this gene might be more active in the BRCA2 tumors, be-
cause those eight numbers are mostly positive, whereas six of
the seven BRAC1s are negative.

A standard frequentist answer to this question uses Wilcox-
on’s nonparametric two-sample test (which amounts to the
usual t-test except with ranks replacing the original numbers).
We order the 15 expression values from smallest to largest and
compute “W ,” the sum of ranks for the BRCA2 values. The
biggest W could be is 92, if all eight BRCA2 numbers were
larger than all seven BRCA1s; at the opposite end of the scale,
if the eight BRCA2s were all smaller than the seven BRCA1s,
we’d get W = 36. For the gene 1 data, we actually get W = 83,
which looks pretty big. It is big by the usual frequentist cri-
terion. Its two-sided p value, the probability of getting a W at
least this extreme, is only .024 under the null hypothesis that
there is no real expression difference. We’d usually put a star
next to .024 to indicate significance, according to Fisher’s fa-
mous .05 cutoff point. Notice that this analysis requires very
little from the statistician; no prior probabilities or likelihoods,
and only the specification of a null hypothesis. It’s no wonder
that hypothesis testing is wildly popular with scientists, and has
been for 100 years.

The .05 significance cutoff has been used literally millions
of times since Fisher proposed it in the early 1900s. It has be-
come a standard of objective comparison in all areas of science.
I don’t think that .05 could stand up to such intense use if it
wasn’t producing basically correct scientific inferences most of
the time. But .05 was intended to apply to a single comparison,
not 3,226 comparisons at once.

I computed W for each of the 3,226 genes in the BRCA
microarray data. The histogram in Figure 2 shows the results,
which range from eight genes with the smallest possible W ,
W = 36, to seven genes with W = 92, the largest possible,
and with all intermediate values represented many times over.
(There’s more about the analysis of this data set in Efron 2004.)

It looks like something is definitely going on here. The his-
togram is much wider than the theoretical Wilcoxon null den-
sity (the smooth curve) that would apply if none of the genes
behaved differently for BRCA1 and BRCA2. A total of 580 of
these genes (18% of them) achieve significance according to
the usual one-at-a-time .05 criterion. That’s a lot more than the
null hypothesis 5%, but now it isn’t so clear how to assess sig-
nificance for any one gene given so many candidates. Does the
W = 83 that we saw for gene 1 really indicate significance?
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Figure 2. Wilcoxon Statistics for 3,226 Genes From a Breast Cancer Study.

I was saying earlier that huge datasets are in some ways eas-
ier to analyze than the small ones we’ve been used to. Here
is a big-dataset kind of answer to assessing the significance
of the observed Wilcoxon value W = 83. A total of 36 of the
3,226 genes (gene 1 and 35 others) have W = 83; under the
null hypothesis that there’s no real difference between BRCA1
and BRCA2 expression, we would expect to see only 9 genes
with W = 83. Therefore, the expected false discovery rate is
9 out of 36, or 25%. If Hedenfalk decides to investigate gene 1
further, he has a 25% chance of wasting his time. Investigator
time is usually precious, so he might prefer to focus attention on
those genes with more extreme W values having smaller false
discovery rates. For example, there are 13 genes with W = 90,
and these have a false discovery rate of only 8%.

The “9 out of 36” calculation looks definitely frequentist.
In fact, the original false discovery rate theory developed by
Benjamini and Hochberg in 1995 was phrased entirely in fre-
quentist terms, not very much different philosophically than
Fisher’s .05 cutoff or Neyman–Pearson testing. Their work is
a good example of the kind of “new theory” that I hope statisti-
cians will be developing in response to the challenge of massive
datasets.

It turns out that the false discovery rate calculations also have
a very nice Bayesian rationale. We assume that a priori a pro-
portion p0 of the genes are null, and that these genes have W’s
following the null Wilcoxon density f0(w). In a usual microar-
ray experiment, we’d expect most of the genes to be null,
with p0 no smaller than, say, 90%. The remainder of the genes
are nonnull and follow some other density, let’s call it f1(w), for
their Wilcoxon scores. These are the “interesting genes,” the
ones that we want to identify and report back to the investiga-
tors. If we know p0, f0, and f1, then Bayes’s rule tells us right
away what the probability is of a gene being null or nonnull
given its Wilcoxon score W .

The catch is that to actually carry out Bayes’s rule, we need
to know the prior quantities p0, f0(w), and f1(w). This looks
pretty hopeless without an alarming amount of prior modeling
and guesswork. But an interesting thing happens with a large

dataset like this one: We can use the data to estimate the prior
quantities, then use these estimates to approximate Bayes rule.
When we do so, the answer turns out much the same as before,
for example, null probability 9 out of 36 given W = 83.

This is properly called an “empirical Bayes” approach.
Empirical Bayes estimates combine the two statistical philoso-
phies; the prior quantities are estimated frequentistically to
carry out Bayesian calculations. Empirical Bayes analysis goes
back to Robbins and Stein in the 1950s, but they were way
ahead of their time. The kind of massively parallel datasets that
really benefit from empirical Bayes analysis seem to be much
more a twenty-first century phenomenon.

The BRCA dataset is big by classical standards, but it is big
in an interesting way; it repeats the same “small” data struc-
ture again and again, so we are presented with 3,226 similar
two-sample comparisons. This kind of parallel structure gives
the statistician a terrific advantage, just what we need to bring
empirical Bayes methods to bear. Statisticians are not passive
observers of the scientific scene. The fact that we can success-
fully analyze ANOVA problems leads scientists to plan their
experiments in ANOVA style. In the same way we can influ-
ence the design of big datasets by demonstrating impressively
successful analyses of parallel structures.

We have a natural advantage here. It’s a lot easier to manufac-
ture high-throughput devices if they have a parallel design. The
familiar medical breakthrough story on TV, showing what looks
like a hundred eyedroppers squirting at once, illustrates paral-
lel design in action. Microarrays, flow cytometry, proteomics,
time-of-flight spectroscopy all refer to machines of this sort that
are going to provide us with huge datasets nicely suited for em-
pirical Bayes methods.

Figure 3 shows another example. It concerns an experiment
comparing seven normal children with seven dyslexic kids.
A diffusion tensor imaging scan (related to fMRI scanning)
was done for each child, providing measurements of activity
at 16,000 locations in the brain. At each of these locations,
a two-sample t-test was performed comparing the normal and
dyslexic kids. The figure shows the signs of the t-statistics
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Figure 3. A Total of 580 t-Statistics From a Brain Imaging Study of
Dyslexia (solid squares t ≥ 2; empty squares t ≥ 0; x ’s t < 0). From data
of Schwartzman, Dougherty, and Taylor (2004).

for 580 of the positions on a single horizontal slice of the
brain scan. (There are 40 other slices with similar pictures.)
Squares indicate positive t-statistics and x’s indicate negative
t-statistics, with filled-in squares indicating values exceeding 2;
these are positions that would be considered significantly dif-
ferent between the two groups by the standard .05 one-at-a-time
criterion.

We can use the same false discovery rate empirical Bayes
analysis here, with one important difference: The geometry of
the brain scan lets us see the large amount of spatial correlation.
Better results are obtained by averaging the data over small con-
tiguous blocks of brain position—better in the sense of giving
more cases with small false discovery rates. The best way of
doing so is one of those interesting questions raised by the new
technology.

There’s one last thing to say about my false discovery rate
calculations for the BRCA data: They may not be right! At first
glance, the “9 out of 36 equals 25% false discoveries” argu-
ment looks too simple to be wrong. The 9 in the numerator,
which comes from Wilcoxon’s null hypothesis distribution, is
the only place where any theory is involved. But that’s where
potential trouble lies. If we only had data for one gene, say for
gene 1 as before, then we would have to use the Wilcoxon null,
but with thousands of genes to consider at once, most of which
are probably null, we can empirically estimate the null distri-
bution itself. Doing so gives far fewer significant genes in this
case (as you can read about in Efron 2004). Estimating the null
hypothesis itself from the data sounds a little crazy, but that’s
what I meant about huge datasets presenting new opportunities
as well as difficulties.

I have to apologize for going on so long about empirical
Bayes, which has always been one of my favorite topics, and
now at last seems to be going from ugly duckling to swan in
the world of statistical applications. Here is another example of
Bayesian–frequentist convergence, equally dear to my heart.

Figure 4 tells the unhappy story of how people’s kidneys get
worse as they grow older. The 157 dots represent 157 healthy
volunteers, with the horizontal axis their age and the vertical
axis a measure of total kidney function. I’ve used the “lowess”
curve fitter, a complicated sort of robust moving average, to

Figure 4. Kidney Function versus Age for 157 Normal Volunteers,
and Lowess Fit.

summarize the decline of kidney function with age. The fitted
curve goes steadily downward except for a plateau in the 20s.

How accurate is the lowess fit? This is one of those questions
whose answer has gone from hopeless to easy with the advent
of high-speed computation. A simple bootstrap analysis gives
the answer in literally seconds. We resample the 157 points,
that is, take a random sample of 157 points with replacement
from the original 157 (so some of the original points appear
once, twice, three times, or more and others don’t appear at
all in the resample). Then the lowess curve fitter is applied to
the resampled dataset, giving a bootstrap version of the original
curve.

In Figure 5 I’ve repeated the whole process 100 times, yield-
ing 100 bootstrap lowess curves. Their spread gives a quick
and dependable picture of the statistical variability in the origi-
nal curve. For instance, we can see that the variability is much
greater near the high end of the age scale, at the far right, than
it is in the plateau.

The bootstrap was originally developed as a purely frequen-
tist device. Nevertheless, the bootstrap picture has a Bayesian
interpretation: If we could put an “uninformative” prior on the
collection of possible age-kidney curves, that is, a prior that re-
flects a lack of specific opinions, then the resulting Bayes analy-
sis would tend to agree with the bootstrap distribution. The
bootstrap-objective Bayes relationship was pursued by Efron
and Tibshirani (1998).

This brings up an important trend in Bayesian statistics. Ob-
jectivity is one of the principal reasons that frequentism domi-
nated twentieth-century applications; a frequentist method like
Wilcoxon’s test, which is completely devoid of prior opinion,

Figure 5. 100 Bootstrap Replication of Lowess Fit.
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has a clear claim to being objective—a crucial fact when scien-
tists communicate with their skeptical colleagues. Uninforma-
tive priors, the kind that also have a claim to objectivity, are the
Bayesian response. Bayesian statistics has seen a strong move-
ment away from subjectivity and toward objective uninforma-
tive priors in the past 20 years.

Technical improvements, the computer implementation of
Markov chain Monte Carlo methods, have facilitated this trend,
but the main impetus, I believe, is the desire to compete with
frequentism in the domain of real-world applications. Whatever
the reason, the effect has been to bring Bayesian and frequentist
practice closer together.

In practice, it isn’t easy to specify an uninformative prior,
especially in messy-looking problems like choosing a possibly
jagged regression curve. What looks uninformative enough of-
ten turns out to subtly force answers in one direction or another.
The bootstrap connection is intriguing, because it suggest a sim-
ple way of carrying out a genuinely objective Bayesian analysis,
but this is only a suggestion so far.

Perhaps I’ve let my enthusiasm for empirical Bayes and the
bootstrap run away with the main point I started out to make.
The bottom line is that we have entered an era of massive scien-
tific data collection, with a demand for answers to large-scale
inference problems that lie beyond the scope of classical sta-
tistics. In the struggle to find these answers, the statistics pro-
fession needs to use both frequenstist and Bayesian ideas, as
well as new combinations of the two. Moreover, I think this is
already beginning to happen. . . which was the real point of my
examples.

A field like statistics has both an inside and an outside. The
outside part faces our clients, the people who need answers to
pressing statistical questions. My examples tonight concerned
outside relationships with physicists, microbiologists, and brain
researchers. One of the encouraging trends in statistics has been
our increasing engagement with front-line science. This came
first to industry and government groups, and now is sweeping
the universities. It has changed statistics department faculties,
the type of students entering the field, the problems we work
on, and the articles in our journals. The change is definitely for
the better—we are a much healthier profession now than when
I was a student in the 1960s.

I find the microarray story particularly encouraging. First
of all, biologists did come to us for answers to their difficult
new inference problems. This is our reward for being help-
ful colleagues in the past, with all those ANOVA, t-tests, and
randomized clinical trials that have become a standard part of
biomedical research. Second, statisticians have made a serious
effort to again be of help, with some of us (although not me, I’m
afraid) devoting enormous energy to learning the biological-
medical background of microarray technology. Most important,
we actually have been of help. There has been definite progress
made on microarray inference (a very small part of which I dis-
cussed this evening), with lots more on the way, I hope.

Microbiologists talk with other information scientists too,
such as data miners, neural networkers, and bioinformatics peo-
ple. It’s human nature to worry about competition like this.

In fact, however, we have a positive regression coefficient with
these “rival” fields. Their enthusiastic energy is refreshing and
contagious. They bring new data-analytic ideas into our field,
ideas that statisticians can then understand and explain in terms
of basic inferential theory. Many scientists are excellent proba-
bilists, but in my experience only statisticians are trained in the
kind of reverse thinking, from observed data back to possible
models, necessary for inference. In other words, don’t worry
about statistics going out of business from outside competition.

If you do feel the need to worry, a better subject is our own
production of useful new ideas. This relates to the “inside” of
the statistics profession, the side that worries about the structure
of statistical inference and how it can be extended. New ideas
are the coin of the realm for an intellectual discipline. Without
them a field hollows out, no matter how successful it may be
in terms of funding or public recognition. Too much “inside”
can be deadly for a field, cutting it off from the bigger world of
science, as happened to mathematics in the twentieth century.
Statistics had an inside phase itself in the 1950s and 1960s, but
that is definitely not today’s problem. In fact, I would give sta-
tistics at least passing grades for the production of genuinely
useful new ideas, like empirical Bayes and false discovery rates,
and I believe that the next few decades should be particularly
fertile ones for statistical innovation.

Sometimes (not very often), the planets align for some lucky
discipline, which then blossoms with new ideas and breathtak-
ing progress. Microbiology is a perfect current example. The
key there was a buildup of interesting questions concerning
cellular processes, followed by new technology that enabled a
much closer look at those processes in action.

Now the planets may be aligning for statistics. New technolo-
gy—electronic computation—has broken the bottleneck of cal-
culation that limited classical statistical theory. At the same
time an onrush of important new questions has come upon us in
the form of huge datasets and large-scale inference problems.
I believe that the statisticians of this generation will participate
in a new age of statistical innovation that might rival the golden
age of Fisher, Neyman, Hotelling, and Wald.

Finally, let me thank the Association for the opportunity to
serve as president, to speak here this evening, and to help honor
our many deserving colleagues.
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