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between the plot based on data and the plot generated by a specific 
set of equations. The proof that the proposed generator is correct is 
based on asking the reader to look at two similar graphs. This eye-
ball test has proved to be a fallible one in statistical analysis. Those 
things that seem to the eye to be similar or very close to the same 
are often drastically different when examined carefully with statis-
tical tools developed for this purpose. 

PEARSON'S GOODNESS OF FIT TEST 
This problem was one that Karl Pearson recognized early in his 
career. One of Pearson's great achievements was the creation of 
the first "goodness of fit test." By comparing the observed to the 
predicted values, Pearson was able to produce a statistic that tested 
the goodness of the fit. He called his test statistic a "chi square 
goodness of fit test." He used the Greek letter chi (x), since the dis-
tribution of this test statistic belonged to a group of his skew distri-
butions that he had designated the chi family. Actually, the test 
statistic behaved like the square of a chi, thus the name "chi 
squared." Since this is a statistic in Fisher's sense, it has a prob-
ability distribution. Pearson proved that the chi square goodness 
of fit test has a distribution that is the same, regardless of the type of 
data used. That is, he could tabulate the probability distribution of 
this statistic and use that same set of tables for every test. The chi 
square goodness of fit test has a single parameter, which Fisher was 
to call the "degrees of freedom." In the 1922 paper in which he first 
criticized Pearson's work, Fisher showed that, for the case of com-
paring two proportions, Pearson had gotten the value of that param-
eter wrong. 

But just because he made a mistake in one small aspect of his 
theory is no reason to denigrate Pearson's great achievement. Pear-
son's goodness of fit test was the forerunner of a major component 
of modern statistical analysis. This component is called "hypothe-
sis testing," or "significance testing." It allows the analyst to propose 
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two or more competing mathematical models for reality and use 
the data to reject one of them. Hypothesis testing is so widely used 
that many scientists think of it as the only statistical procedure 
available to them. The use of hypothesis testing, as we shall see in 
later chapters, involves some serious philosophical problems. 

TESTING WHETHER THE LADY CAN 
TASTE A DIFFERENCE IN THE TEA 
Suppose we wish to test whether the lady can detect the difference 
between a cup of tea into which the milk has been poured into 
the tea versus a cup of tea wherein the tea has been poured into 
the milk. We present her with two cups, telling her that one of the 
cups is tea into milk and the other is milk into tea. She tastes and 
identifies the cups correctly. She could have done this by guess-
ing; she had a 50:50 chance of guessing correctly. We present her 
with another pair of the same type. Again, she identifies them cor-
rectly. If she were just guessing, the chance of this happening 
twice in a row is '/4. We present her with a third pair of cups, and 
again she identifies them correctly. The chance that this has hap-
pened as a result of pure guesswork is '/8. We present her with 
more pairs, and she keeps identifying the cups correctly. At some 
point, we have to be convinced that she can tell the difference. 
Suppose she was wrong with one pair. Suppose further that this 
was the twenty-fourth pair and she was correct on all the others. 
Can we still conclude that she is able to detect a difference? Sup-
pose she was wrong in four out of the twenty-four? Five of the 
twenty-four? 

Hypothesis, or significance, testing is a formal statistical proce-
dure that calculates the probability of what we have observed, 
assuming that the hypothesis to be tested is true. When the observed 
probability is very low, we conclude that the hypothesis is not 
true. One important point is that hypothesis testing provides a tool 
for rejecting a hypothesis. In the case above, this is the hypothesis 
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that the lady is only guessing. It does not allow us to accept a 
hypothesis, even if the probability associated with that hypothesis is 
very high. 

Somewhere early in the development of this general idea, the 
word significant came to be used to indicate that the probability 
was low enough for rejection. Data became significant if they 
could be used to reject a proposed distribution. The word was used 
in its late-nineteenth-century English meaning, which is simply 
that the computation signified or showed something. As the En-
glish language entered the twentieth century, the word significant 
began to take on other meanings, until it developed its current 
meaning, implying something very important. Statistical analysis 
still uses the word significant to indicate a very low probability com-
puted under the hypothesis being tested. In that context, the word 
has an exact mathematical meaning. Unfortunately, those who use 
statistical analysis often treat a significant test statistic as implying 
something much closer to the modem meaning of the word. 

FISHER'S USE OF P-VALUES 
R. A. Fisher developed most of the significance testing methods 
now in general use. He referred to the probability that allows one 
to declare significance as the "p-value." He had no doubts about 
its meaning or usefulness. Much of Statistical Methods for 
Research Workers is devoted to showing how to calculate p-values. 
As I noted earlier, this was a book designed for nonmathemati-
cians who want to use statistical methods. In it, Fisher does not 
describe how these tests were derived, and he never indicates 
exactly what p-value one might call significant. Instead, he dis-
plays examples of calculations and notes whether the result is sig-
nificant or not. In one example, he shows that the p-value is less 
than .01 and states: "Only one value in a hundred will exceed [the 
calculated test statistic 1 by chance, so that the difference between 
the results is clearly significant." 
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The closest he came to defining a specific p-value that would 
be significant in all circumstances occurred in an article printed in 
the Proceedings of the Society for Psychical Research in 1929. Psy-
chical research refers to attempts to show, via scientific methods, 
the existence of clairvoyance. Psychical researchers make extensive 
use of statistical significance tests to show that their results are 
improbable in terms of the hypothesis that the results are due to 
purely random guesses by the subjects. In this article, Fisher con-
demns some writers for failing to use significance tests properly. He 
then states: 

In the investigation of living beings by biological 
methods, statistical tests of significance are essential. 
Their function is to prevent us being deceived by 
accidental occurrences, due not to the causes we wish to 
study, or are trying to detect, but to a combination of 
many other circumstances which we cannot control. An 
observation is judged significant, if it would rarely have 
been produced, in the absence of a real cause of the kind 
we are seeking. It is a common practice to judge a result 
significant, if it is of such a magnitude that it would have 
been produced by chance not more frequently than once 
in twenty trials. This is an arbitrary, but convenient, level 
of significance for the practical investigator, but it does 
not mean that he allows himself to be deceived once in 
every twenty experiments. The test of significance only 
tells him what to ignore, namely all experiments in 
which significant results are not obtained. He should 
only claim that a phenomenon is experimentally 
demonstrable when he knows how to design an 
experiment so that it will rarely fail to give a significant 
result. Consequently, isolated significant results which he 
does not know how to reproduce are left in suspense 
pending further investigation. 
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Note the expression "knows how to design an experiment ... 
that ... will rarely fail to give a significant result." This lies at the 
heart of Fisher's use of significance tests. To Fisher, the significance 
test makes sense only in the context of a sequence of experiments, 
all aimed at elucidating the effects of specific treatments. Reading 
through Fisher's applied papers, one is led to believe that he used 
significance tests to come to one of three possible conclusions. If 
the p-value is very small (usually less than .01), he declares that an 
effect has been shown. If the p-value is large (usually greater than 
.20), he declares that, if there is an effect, it is so small that no exper-
iment of this size will be able to detect it. If the p-value lies in 
between, he discusses how the next experiment should be designed 
to get a better idea of the effect. Except for the above statement, 
Fisher was never explicit about how the scientist should interpret a 
p-value. What seemed to be intuitively clear to Fisher may not be 
clear to the reader. 

We will come back to reexamine Fisher's attitude toward sig-
nificance testing in chapter 18. It lies at the heart of one of Fisher's 
great blunders, his insistence that smoking had not been shown to 
be harmful to health. But let us leave Fisher's trenchant analysis of 
the evidence involving smoking and health for later and turn to 
35-year-old Jerzy Neyman in the year 1928. 

JERZY NEYMAN'S MATHEMATICAL 
EDUCATION 
Jerzy Neyman was a promising mathematics student when World 
War I erupted across his homeland in Eastern Europe. He was 
driven into Russia, where he studied at the University of Kharkov, 
a provincial outpost of mathematical activity. Lacking teachers 
who were up to date in their knowledge, and forced to miss semes-
ters of schooling because of the war, he took the elementary math-
ematics he was taught at Kharkov and built upon it by seeking out 
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articles in the mathematics journals available to him. Neyman 
thus received a formal mathematics education similar to that 
taught to students of the nineteenth century, and then educated 
himself into twentieth-century mathematics. 

The journal articles available to Neyman were limited to what 
he could find in the libraries of the University of Kharkov and later 
at provincial Polish schools. By chance, he came across a series of 
articles by Henri Lebesgue of France. Lebesgue (1875-1941) had 
created many of the fundamental ideas of modern mathematical 
analysis in the early years of the twentieth century, but his papers 
are difficult to read. Lebesgue integration, the Lebesgue conver-
gence theorem, and other creations of this great mathematician 
have all been simplified and organized in more understandable 
forms by later mathematicians. Nowadays, no one reads Lebesgue 
in the original. Students all learn about his ideas through these 
later versions. 

No one, that is, except Jerzy Neyman, who had only Lebesgue's 
original articles, who struggled through them, and who emerged 
seeing the brilliant light of these great new (to him) creations. For 
years afterward, Neyman idolized Lebesgue, and, in the late 1930s, 
finally got to meet him at a mathematics conference in France. 
According to Neyman, Henri Lebesgue turned out to be a gruff, 
impolite man, who responded to Neyman's enthusiasm with a few 
mutterings and turned and walked away in the midst of Neyman's 
talking to him. 

Neyman was deeply hurt by this rebuff, and perhaps with this 
as an object lesson, always went out of his way to be polite and kind 
to young students, to listen carefully to what they said, and to 
engage them in their enthusiasms. That was Jerzy Neyman, the 
man. All who knew him remember him for his kindness and car-
ing manners. He was gracious and thoughtful and dealt with peo-
ple with genuine pleasure. When I met him, he was in his early 
eighties, a small, dignified, well-groomed man with a neat white 
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moustache. His blue eyes sparkled as he listened to others and 
engaged in intensive conversation, giving the same personal atten-
tion to everyone, no matter who they were. 

In the early years of his career, Jerzy Neyman managed to 
find a position as a junior member of the faculty of the Univer-
sity of Warsaw. At that time, the newly independent nation of 
Poland had little money to support academic research, and posi-
tions for mathematicians were scarce. In 1928, he spent a sum-
mer at the biometrical laboratory in London and there came to 
know Egon S. Pearson and his wife, Eileen, and their two daugh-
ters. Egon Pearson was Karl Pearson's son, and a more striking con-
trast in personalities is hard to find. Where Karl Pearson was driv-
ing and dominating, Egon Pearson was shy and self-effacing. Karl 
Pearson rushed through new ideas, often publishing an article with 
the mathematics vaguely sketched in or even with some errors. 
Egon Pearson was extremely careful, worrying over the details of 
each calculation. 

The friendship between Egon Pearson and Jerzy Neyman is 
preserved in their exchange of letters between 1928 and 1933. 
These letters provide a wonderful insight into the sociology of sci-
ence, showing how two original minds grapple with a problem, 
each one proposing ideas or criticizing the ideas of the other. 
Pearson's self-effacing comes to the forefront as he hesitantly sug-
gests that perhaps something Neyman had proposed might not 
work out. Neyman's great originality comes out as he cuts through 
complicated problems to find the essential nature of each diffi-
culty. For someone who wants to understand why mathematical 
research is so often a cooperative venture, I recommend the 
Neyman-Pearson letters. 

What was the problem that Egon Pearson first proposed to Ney-
man? Recall Karl Pearson's chi square goodness of fit test. He 
developed it to test whether observed data fit a theoretical distribu-
tion. There really is no such thing as the chi square goodness of fit 
test. The analyst has available an infinite number of ways to apply 
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the test to a given set of data. There appeared to be no criterion on 
how "best" to pick among those many choices. Every time the test 
is applied, the analyst must make arbitrary choices. Egon Pearson 
posed the following question to Jerzy Neyman: 

If I have applied a chi square goodness of fit test to a set 
of data versus the normal distribution, and if I have failed 
to get a significant p-value, how do I know that the data 
really fit a normal distribution? That is, how do I know 
that another version of the chi square test or another 
goodness of fit test as yet undiscovered might not have 
produced a significant p-value and allowed me to reject 
the normal distribution as fitting the data? 

NEYMAN'S STYLE OF MATHEMATICS 
Neyman took this question back to Warsaw with him, and the 
exchange ofletters began. Both Neyman and young Pearson were 
impressed with Fisher's concept of estimation based on the likeli-
hood function. They began their investigation by looking at the 
likelihood associated with a goodness of fit test. The first of their 
joint papers describes the results of those investigations. It is the 
most difficult of the three classic papers they produced, which 
were to revolutionize the whole idea of significance testing. As they 
continued looking at the question, Neyman's great clarity of vision 
kept distilling the problem down to its essential elements, and their 
work became clearer and easier to understand. 

Although the reader may not believe it, literary style plays an 
important role in mathematical research. Some mathematical writ-
ers seem unable to produce articles that are easy to understand. 
Others seem to get a perverse pleasure out of generating many lines 
of symbolic notation so filled with detail that the general idea is lost 
in the picayune. But some authors have the ability to display com-
plicated ideas with such force and simplicity that the development 
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appears to be obvious in their exposition. Only upon reviewing 
what has been learned does the reader realize the great power of 
the results. Such an author was Jerzy Neyman. It is a pleasure to 
read his papers. The ideas evolve naturally, the notation is decep-
tively simple, and the conclusions appear to be so natural that you 
find it hard to see why no one produced these results long before. 

Pfizer Central Research, where I worked for twenty-seven years, 
sponsors a yearly colloquium at the University of Connecticut. 
The statistics department of the university invites a major figure in 
biostatistical research to come for a day, meet with students, and 
then present a talk in the late afternoon. Since I was involved in 
setting up the grant for this series, I had the honor of meeting some 
of the great men of statistics through them. Jerzy Neyman was one 
such invitee. He asked that his talk have a particular form. He 
wanted to present a paper and then have a panel of discussants who 
would criticize his paper. Since this was the renowned Jerzy Ney-
man, the organizers of the symposium contacted well-known sen-
ior statisticians in the New England area to constitute the panel. At 
the last minute, one of the panelists was unable to come, and I was 
asked to substitute for him. 

Neyman had sent us a copy of the paper he planned to present. 
It was an exciting development, wherein he applied work he had 
done in 1939 to a problem in astronomy. I knew that 1939 paper; 
I had discovered it years before while still a graduate student, and 
I had been impressed by it. The paper dealt with a new class of dis-
tributions Neyman had discovered, which he called the "conta-
gious distributions." The problem posed in the paper began with 
trying to model the appearance of insect grubs in soil. The female 
insect flew about the field, laden with eggs, then chose a spot at 
random to lay the eggs. Once the eggs were laid, the grubs hatched 
and crawled outward from that spot. A sample of soil is taken from 
the field. What is the probability distribution of the number of 
grubs found in that sample? 

The contagious distributions describe such situations. They are 
derived in the 1939 paper with an apparently simple series of equa-
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tions. This derivation seems obvious and natural. It is clear, when 
the reader gets to the end of the paper, that there is no other way 
to approach it, but this is clear only after reading Neyman. Since 
that 1939 paper, Neyman's contagious distributions have been 
found to fit a great many situations in medical research, in metal-
lurgy, in meteorology, in toxicology, and (as described by Neyman 
in his Pfizer Colloquium paper) in dealing with the distribution of 
galaxies in the universe. 

After he finished his talk, Neyman sat back to listen to the panel 
of discussants. All the other members of the panel were prominent 
statisticians who had been too busy to read his paper in advance. 
They looked upon the Pfizer Colloquium as a recognition of 
honor for Neyman. Their "discussions" consisted of comments 
about Neyman's career and past accomplishments. I had come 
onto the panel as a last-minute replacement and could not refer to 
my (nonexistent) previous experiences with Neyman. My com-
ments were directed to Neyman's presentation that day, as he had 
asked. In particular, I told how I had discovered the 1939 paper 
years before and revisited it in anticipation of this session. I 
described the paper, as best I could, showing enthusiasm when I 
came to the clever way Neyman had developed the meaning of the 
parameters of the distribution. 

Neyman was clearly delighted with my comments. Afterward, 
we had an exciting discussion about the contagious distributions 
and their uses. A few weeks later, a large package arrived in the 
mail. It was a copy of A Selection of Early Statistical Papers of 
J. Neyman, published by the University of California Press. On the 
inside cover was the inscription: "To Dr. David Salsburg, with 
hearty thanks for his interesting comments on my presentation of 
April 30, 1974. J. Neyman." 

I treasure this book both for the inscription and the set of beau-
tiful, well-written papers in it. I have since had the opportunity to 
talk with many of Neyman's students and coworkers. The friendly, 
interesting, and interested man I met in 1974 was the man that 
they knew and admired. 
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At the start of their collaboration, Egon Pearson asked Jerzy 
Neyman how he could be sure that a set of data was nor-
mally distributed if he fa iled to find a significant p-value 

when testing fo r normality. Their collaboration started with this 
question, but Pearson's initial question opened the door to a much 
broader one. \oVhat does it mean to have a nonsignificant resu lt in 
a significance test? Can we conclude that a hypothesis is true if we 
have fai led to refute it? 

R. A. Fisher had addressed that question in an indirect way. 
Fisher would take large p-values (and a failure to find significance) 
as indicating that the data were inadequate to decide. To Fisher, 
there was never a presumption that a fai lure to find significance 

meant that the tested hypothesis was true. To quote him: 

For the logical fallacy of believing 
that a hypothesis has been proved to 
be true, merely because it is nol 
contradicted by the available facts, 

has no more right to insinuate 
itself in statistical than in 
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other kinds of scientific reasoning .... It would, 
therefore, add greatly to the clarity with which the tests 
of significance are regarded if it were generally understood 
that tests of significance, when used accurately, are 
capable of rejecting or invalidating hypotheses, in so far 
as they are contradicted by the data: but that they are 
never capable of establishing them as certainly true .... 

Karl Pearson had often used his chi square goodness of fit test to 
"prove" that data followed particular distributions. Fisher had intro-
duced more rigor into mathematical statistics, and Karl Pearson's 
methods were no longer acceptable. The question still remained. It 
was necessary to assume that the data fit a particular distribution, in 
order to know which parameters to estimate and determine how 
those parameters relate to the scientific question at hand. The statis-
ticians were frequently tempted to use significance tests to prove that. 

In their correspondence, Egon Pearson and Jerzy Neyman 
explored several paradoxes that emerged from significance testing, 
cases where unthinking use of a significance test would reject a 
hypothesis that was obviously true. Fisher never fell into those 
paradoxes, because it would have been obvious to him that the sig-
nificance tests were being applied incorrectly. Neyman asked what 
criteria were being used to decide when a significance test was 
applied correctly. Gradually, between their letters, with visits that 
Neyman made to England during the summers and Pearson's vis-
its to Poland, the basic ideas of hypothesis testing emerged. 1 

A simplified version of the Neyman-Pearson formulation of 
hypothesis testing can now be found in all elementary statistics text-

IThroughout this chapter, I attribute the essential mathematical ideas to Neyman. This is 
because Neyman was responsible for the polished final formulation and for the careful 
mathematical development behind it. However, correspondence between Egon Pearson 
and William Sealy Gosset, which began six months before Pearson met Neyman, 
indicates that Pearson was already thinking about alternative hypotheses and different 
types of errors and that Gosset may have first suggested the idea. In spite of the fact that 
his was the initial input, Pearson acknowledged that Neyman provided the mathematical 
foundations for his own "loose ideas." 
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books. It has a simple structure. I have found that it is easy for most 
first-year students to understand. Since it has been codified, this ver-
sion of the formulation is exact and didactic. This is how it must be 
done, the texts imply, and this is the only way it can be done. This 
rigid approach to hypothesis testing has been accepted by regulatory 
agencies like the U.S. Food and Drug Administration and the Envi-
ronmental Protection Agency, and it is taught in medical schools to 
future medical researchers. It has also wormed its way into legal pro-
ceedings when dealing with certain types of discrimination cases. 

When the Neyman-Pearson formulation is taught in this rigid, 
simplified version of what Neyman developed, it distorts his discov-
eries by concentrating on the wrong aspects of the formulation. 
Neyman's major discovery was that significance testing made no 
sense unless there were at least two possible hypotheses. That is, you 
could not test whether data fit a normal distribution unless there 
was some other distribution or set of distributions that you believed 
it would fit. The choice of these alternative hypotheses dictates the 
way in which the significance test is run. The probability of detect-
ing that alternative, if it is true, he called the "power" of the test. In 
mathematics, clarity of thought is developed by giving clear, well-
defined names to specific concepts. In order to distinguish between 
the hypothesis being used to compute Fisher's p-value and the other 
possible hypothesis or hypotheses, Neyman and Pearson called the 
hypothesis being tested the "null hypothesis" and the other 
hypotheses the "alternative." In their formulation, the p-value is cal-
culated for testing the null hypothesis but the power refers to how 
this p-value will behave if the alternative is, in fact, true. 

This led Neyman to two conclusions. One was that the power of 
a test was a measure of how good the test was. The more powerful 
of two tests was the better one to use. The second conclusion was 
that the set of alternatives cannot be too large. The analyst cannot 
say that the data come from a normal distribution (the null hypoth-
esis) or that they come from any other possible distribution. That 
is too wide a set of alternatives, and no test can be powerful against 
all possible alternatives. 



110 THE LADY TASTING TEA 

In 1956, L. J. Savage and Raj Raghu Bahadur at the University 
of Chicago showed that the class of alternatives does not have to be 
very wide for hypothesis testing to fail. They constructed a rela-
tively small set of alternative hypotheses against which no test had 
any power. During the 1950s, Neyman developed the idea of 
restricted hypothesis tests, where the set of alternative hypotheses is 
very narrowly defined. He showed that such tests are more power-
ful than ones dealing with more inclusive sets of hypotheses. 

In many situations, hypothesis tests are used against a null 
hypothesis that is a straw man. For instance, when two drugs are 
being compared in a clinical trial, the null hypothesis to be tested 
is that the two drugs produce the same effect. However, if that were 
true, then the study would never have been run. The null hypoth-
esis that the two treatments are the same is a straw man, meant to 
be knocked down by the results of the study. So, following Ney-
man, the design of the study should be aimed at maximizing the 
power of the resulting data to knock down that straw man and show 
how the drugs differ in effect. 

WHAT Is PROBABILITY? 
Unfortunately, to develop a mathematical approach to hypothesis 
testing that was internally consistent, Neyman had to deal with a 
problem that Fisher had swept under the rug. This is a problem 
that continues to plague hypothesis testing, in spite of Neyman's 
neat, purely mathematical solution. It is a problem in the applica-
tion of statistical methods to science in general. In its more general 
form, it can be summed up in the question: What is meant by 
probability in real life? 

The mathematical formulations of statistics can be used to com-
pute probabilities. Those probabilities enable us to apply statistical 
methods to scientific problems. In terms of the mathematics used, 
probability is well defined. How does this abstract concept connect 
to reality? How is the scientist to interpret the probability statements 
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of statistical analyses when trying to decide what is true and what is 
not? In the final chapter of this book I shall examine the general 
problem and the attempts that have been made to answer these 
questions. For the moment, however, we will examine the specific 
circumstances that forced Neyman to find his version of an answer. 

Recall that Fisher's use of a significance test produced a num-
ber Fisher called the p-value. This is a calculated probability, a 
probability associated with the observed data under the assumption 
that the null hypothesis is true. For instance, suppose we wish to 
test a new drug for the prevention of a recurrence of breast cancer 
in patients who have had mastectomies, comparing it to a placebo. 
The null hypothesis, the straw man, is that the drug is no better 
than the placebo. Suppose that after five years, 50 percent of the 
women on placebos have had a recurrence and none of the 
women on the new drug have. Does this prove that the new drug 
"works"? The answer, of course, depends upon how many patients 
that 50 percent represents. 

If the study included only four women in each group, that 
means we had eight patients, two of whom had a recurrence. Sup-
pose we take any group of eight people, tag two of them, and divide 
the eight at random into two groups of four. The probability that 
both of the tagged people will fall into one of the groups is around 
.30. If there were only four women in each group, the fact that all 
the recurrences fell in the placebo group is not significant. If the 
study included 500 women in each group, it would be highly 
unlikely that all 250 with recurrences were on the placebo, unless 
the drug was working. The probability that all 250 would fall in 
one group if the drug was no better than the placebo is the p-value, 
which calculates to be less than .0001. 

The p-value is a probability, and this is how it is computed. 
Since it is used to show that the hypothesis under which it is cal-
culated is false, what does it really mean? It is a theoretical proba-
bility associated with the observations under conditions that are 
most likely false. It has nothing to do with reality. It is an indirect 
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measurement of plausibility. It is not the probability that we would 
be wrong to say the drug works. It is not the probability of any kind 
of error. It is not the probability that a patient will do as well on the 
placebo as on the drug. But, to determine which tests are better 
than others, Neyman had to find a way to put hypothesis testing 
within a framework wherein probabilities associated with the deci-
sions made from the test could be calculated. He needed to con-
nect the p-values of the hypothesis test to real life. 

THE FREOUENTIST DEFINITION 
'-' 

OF PROBABILITY 
In 1872, John Venn, the British philosopher, had proposed a for-
mulation of mathematical probability that would make sense in 
real life. He turned a major theorem of probability on its head. 
This is the law of large numbers, which says that if some event has 
a given probability (like throwing a single die and having it land 
with the six side up) and if we run identical trials over and over 
again, the proportion of times that event occurs will get closer and 
closer to the probability. 

Venn said the probability associated with a given event is the 
long-run proportion of times the event occurs. In Venn's proposal, 
the mathematical theory of probability did not imply the law of 
large numbers; the law of large numbers implied probability. This 
is the frequentist definition of probability. In 1921, John Maynard 
Keynes2 demolished this as a useful or even meaningful interpre-
tation, showing that it has fundamental inconsistencies that make 

2There is a kind of misonomy involved with Keynes. Most people would think of him as 
an economist, the founder of the Keynesian school of economics, dealing with the ways in 
which government manipulation of monetary policy can influence the course of the 
economy. However, Keynes had his Ph.D. in philosophy; and his PhD. dissertation, 
published in 1921 as A Treatise on Probability, is a major monument in the development 
of the philosophical foundations behind the use of mathematical statistics. In future 
chapters, we will have occasion to quote Keynes. It will be from Keynes the probabilist, 
and not Keynes the economist, that we will be quoting. 
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it impossible to apply the frequentist definition in most cases where 
probability is invoked. 

When it came to structuring hypothesis tests in a formal math-
ematical way, Neyman fell back upon Venn's frequentist definition. 
Neyman used this to justify his interpretation of the p-value in a 
hypothesis test. In the Neyman-Pearson formulation, the scientist 
sets a fixed number, such as .05, and rejects the null hypothesis 
whenever the significance test p-value is less than or equal to .05. 
This way, in the long run, the scientist will reject a true null hypoth-
esis exactly 5 percent of the time. The way hypothesis testing is now 
taught, Neyman's invocation of the frequentist approach is empha-
sized. It is too easy to view the Neyman-Pearson formulation of 
hypothesis testing as a part of the frequentist approach to probabil-
ity and to ignore the more important insights that Neyman pro-
vided about the need for a well-defined set of alternative hypothe-
ses against which to test the straw man of the null hypothesis. 

Fisher misunderstood Neyman's insights. He concentrated on 
the definition of significance level, missing the important ideas of 
power and the need to define the class of alternatives. In criticism 
of Neyman, he wrote: 

Neyman, thinking he was correcting and improving 
my own early work on tests of significance, as a means 
to the "improvement of natural knowledge," in fact 
reinterpreted them in terms of that technological and 
commercial apparatus which is known as an acceptance 
procedure. Now, acceptance procedures are of great 
importance in the modern world. When a large 
concern like the Royal Navy receives material from an 
engineering firm it is, I suppose, subjected to sufficiently 
careful inspection and testing to reduce the frequency of 
the acceptance of faulty or defective consignments .... 
But, the logical differences between such an operation 
and the work of scientific discovery by physical or 
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biological experimentation seem to me so wide that 
the analogy between them is not helpful, and the 
identification of the two sorts of operations is 
decidedly misleading. 

In spite of these distortions of Neyman's basic ideas, hypothesis 
testing has become the most widely used statistical tool in scientific 
research. The exquisite mathematics of Jerzy Neyman have now 
become an idee fixe in many parts of science. Most scientific jour-
nals require that the authors of articles include hypothesis testing 
in their data analyses. It has extended beyond the scientific jour-
nals. Drug regulatory authorities in the United States, Canada, and 
Europe require the use of hypothesis tests in submissions. Courts 
of law have accepted hypothesis testing as an appropriate method 
of proof and allow plaintiffs to use it to show employment discrim-
ination. It permeates all branches of statistical science. 

The climb of the Neyman-Pearson formulation to the pinnacle 
of statistics did not go unchallenged. Fisher attacked it from its 
inception and continued to attack it for the rest of his life. In 1955, 
he published a paper entitled "Statistical Methods and Scientific 
Induction" in the Journal of the Royal Statistical Society, and he 
expanded on this with his last book, Statistical Methods and Sci-
entific Inference. In the late 1960s, David Cox, soon to be the edi-
tor of Biometrika, published a trenchant analysis of how hypothe-
sis tests are actually used in science, showing that Neyman's 
frequentist interpretation was inappropriate to what is actually 
done. In the 1980s, W. Edwards Deming attacked the entire idea 
of hypothesis testing as nonsensical. (We shall come back to Dem-
ing's influence on statistics in chapter 24.) Year after year, articles 
continue to appear in the statistical literature that find new faults 
with the Neyman-Pearson formulation as frozen in the textbooks. 

Neyman himself took no part in the canonization of the Neyman-
Pearson formulation of hypothesis testing. As early as 1935, in an 
article he published (in French) in the Bulletin de la Societe Mathe-
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matique de France, he raised serious doubts about whether 
optimum hypothesis tests could be found. In his later papers, 
Neyman seldom made use of hypothesis tests directly. His statis-
tical approaches usually involved deriving probability distributions 
from theoretical principles and then estimating the parameters 
from the data. 

Others picked up the ideas behind the Neyman-Pearson for-
mulation and developed them. During World War II, Abraham 
Wald expanded on Neyman's use of Venn's frequentist definitions 
to develop the field of statistical decision theory. Eric Lehmann 
produced alternative criteria for good tests and then, in 1959, wrote 
a definitive textbook on the subject of hypothesis testing, which 
remains the most complete description of Neyman-Pearson 
hypothesis testing in the literature. 

Just before Hitler invaded Poland and dropped a curtain of evil 
upon continental Europe, Neyman came to the United States, 
where he started a statistics program at the University of California 
at Berkeley. He remained there until his death in 1981, having cre-
ated one of the most important academic statistics departments in 
the world. He brought to his department some of the major figures 
in the field. He also drew from obscurity others who went on to 
great achievements. For example, David Blackwell was working 
alone at Howard University, isolated from other mathematical stat-
isticians. Because of his race, he had been unable to get an 
appointment at "White" schools, in spite of his great potential; 
Neyman invited Blackwell to Berkeley. Neyman also brought in a 
graduate student who had come from an illiterate French peasant 
family; Lucien Le Cam went on to become one of the world's lead-
ing probabilists. 

Neyman was always attentive to his students and fellow faculty 
members. They describe the pleasures of the afternoon depart-
mental teas, which Neyman presided over with a courtly gracious-
ness. He would gently prod someone, student or faculty, to describe 
some recent research and then genially work his way around the 
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room, getting comments and aiding the discussion. He would end 
many teas by lifting his cup and toasting, "To the ladies!" He was 
especially good to "the ladies," encouraging and furthering the 
careers of women. Prominent among his female protegees were 
Dr. Elizabeth Scott, who worked with Neyman and was a coauthor 
on papers ranging from astronomy to carcinogenesis to zoology, and 
Dr. Evelyn Fix, who made major contributions to epidemiology. 

Until R. A. Fisher died in 1962, Neyman was under constant 
attack by this acerbic genius. Everything Neyman did was grist for 
Fisher's criticism. If Neyman succeeded in showing a proof of 
some obscure Fisherian statement, Fisher attacked him for mis-
understanding what he had written. If Neyman expanded on a 
Fisherian idea, Fisher attacked him for taking the theory down a 
useless path. Neyman never responded in kind, either in print or, 
if we are to believe those who worked with him, in private. 

In an interview toward the end of his life, Neyman described a 
time in the 1950s when he was about to present a paper in French 
at an international meeting. As he went to the podium, he realized 
that Fisher was in the audience. While presenting the paper, he 
steeled himself for the attacks he knew would come. He knew that 
Fisher would pounce upon some unimportant minor aspect of the 
paper and tear it and Neyman to pieces. Neyman finished and 
waited for questions from the audience. A few came. But Fisher 
never stirred, never said a word. Later, Neyman discovered that 
Fisher could not speak French. 


