A Grammar of Data Analysis

Xunmo Yang, Taylor Pospisil, Omkar Muralidharan, Google, Inc.
and
Dennis L. Sun
Google, Inc. and Stanford University

October 3, 2025

Abstract

This paper outlines a grammar of data analysis, as distinct from grammars of
data manipulation. The primitives of this grammar are metrics and dimensions.
We describe a Python implementation of this grammar called Meterstick, which is
agnostic to the underlying data source, which may be a DataFrame or a SQL database.

Keywords: data science, grammar of data analysis

1 Introduction

This paper proposes a grammar of data analysis, in the vein of grammars that have been
proposed for graphics (Wilkinson 2006, Wickham 2010). Just as a grammar of language
specifies the primitives that make up a sentence (e.g., subject, verb, predicate), a grammar
of data analysis specifies the primitives that make up an analysis (e.g., metrics, dimensions).
By identifying these primitives, as well as the rules for composing them, we can design
software libraries where those primitives are promoted to first-class citizens. The goal is to
streamline the data analysis workflow, much as ggplot2 has done for data visualization.
(Wickham 2009)

We are not the first to propose such an idea. Many people regard dplyr (Wickham &
Francois 2014) as a kind of grammar for data analysis. While dplyr is indeed a grammar,
its primitives are too low a level to facilitate the more complex analyses we have in mind,
as we argue in Section 3. In fairness to dplyr, it only claims to be a “grammar of data
manipulation,” which is a precursor to data analysis. In order to facilitate complex analyses,
a good grammar of data analysis ought to provide a layer of abstraction above the details
of data manipulation. That said, implementations of a grammar of data analysis can and
should be built on top of a good grammar of data manipulation, such as dplyr in R or

pandas in Python.

2 A Grammar of Data Analysis

Many data analysis problems can be framed as calculating metrics over dimensions. A
metric defines the computation, while a a dimension defines the granularity at which that

computation should be done. For example:

1. A baseball team wants to track the distribution of pitch types thrown by each pitcher

to each batter. The “dimensions” are the pitcher and the batter, and the “metric” is

a vector of probabilities representing the distribution over the different pitch types.

2. After running randomized experiments to evaluate 5 proposed new website designs,

an online retailer wants to know the change in churn rate in each region from each

of the new designs. The “dimension” is the region, and the “metric” is a vector of

changes in churn rate between each of the new designs and the control design.

3. Card & Krueger (1994) estimated the effect of minimum wage on employment using a
natural experiment where the minimum wage increased in New Jersey but stayed the
same in Pennsylvania. They measured employment at different fast-food restaurants
before and after the minimum wage increase. Here, the “dimension” is the restaurant,

and the “metric” is the difference-in-difference (DID) in the employment rate.

At a high level, a grammar of data analysis consists of just these two components,
metrics and dimensions, which can be specified independently of one another. That is,
we can easily imagine calculating the same metric over a different set of dimensions (e.g.,
pitcher only, instead of both pitcher and batter), or calculating a different metric (e.g.,
batting average) over the same set of dimensions. We illustrate this grammar using our

implementation of it, an open-source Python library called Meterstick:

1. In the baseball example, the metric is simply a count over pitch types, and the
Meterstick code reflects this:

pitch_types = Count("pitchtype") | Distribution(over="pitchtype")

pitch_types.compute_on(df, split_by=["pitcher", "batter"])

2. In the online retail example, we transform the basic churn metric by the PercentChange
operation to obtain the final metric:
churn = (Sum("lost") / Count("lost")).set_names(["churn"])

churn_change = churn | PercentChange ("experiment", "control")

churn_change.compute_on(df, split_by=["region"]))

3. In the minimum wage example, we can implement the DID estimator for the average
employment rate as

employment_rate = Mean("EMP") # equals Sum("EMP") / Count ("EMP")
did = (employment_rate

| AbsoluteChange ("STATE_NAME", "PA")

| AbsoluteChange ("PERIOD", "Before"))

did.compute_on (df)

Although we calculated the absolute change in employment to reproduce the results
of Card & Krueger (1994), we could just have well calculated the percent change in
employment, instead reporting a percentage point difference. This is not straight-
forward to do in the regression framework used by Card & Krueger (1994), but it is
straightforward in this grammar of data analysis; we would simply need to replace

the first AbsoluteChange by a PercentChange.

In each case, a metric is defined and piped to the function compute_on() that finally
computes that metric on data. The dimensions are specified in the split_by= argument
of compute_on(). If we decide to change the dimensions later, the code only needs to be
modified in one place, making the code more modular.

Compared to dimensions, metrics are much richer in their possibilities. The remainder
of this section demonstrates how the algebraic structure of metrics can be used to construct

arbitrarily complex metrics.

2.1 The Algebra of Metrics

Formally, a metric is a function f that maps the space of dataframes D to a space of

arrays, which may be one of:
e the space of scalars R (e.g., sum, mean, count),
e the space of vectors R" (e.g., distribution), or
e the space of matrices R™*".

We can add, subtract, multiply, and divide metrics f; and f; according to the general rule

(fio f2)(D) = fi(D) o fa(D),

assuming that the operation o is already well-defined on arrays. For example, the churn

metric we defined above is really a function of a dataframe D that is computed as

churn(D) = Sum("lost") (D)/Count ("lost") (D).

If the metric returns an array, then operations are typically performed element-wise, al-
though operations can be “broadcast” for arrays of different shapes. (Van Der Walt et al.
2011) If f; and f, may produce arrays of incompatible shapes, then (f; o f2)(D) is NaN.
The space of metrics M resembles an algebraic field. (Dummit & Foote 2004) It is
helpful to analogize the space of metrics M to a field because then we can regard adding
a new metric as a field extension. Just as extending the field of rationals Q to include /2

introduces infinitely many new elements of the form
{a+bvV2:a,beQ},
defining a new metric—say, SD("x")—introduces infinitely many new metrics of the form
{my + mqy - SD("x") : my, my € M}.

In particular, if we take m; = Mean("x") and my = 1.96 / Count("x") ** 0.5, then

the new metric is familiar as the upper bound of a 95% confidence interval.

2.2 Operations

Metrics can also be modified by Operations. All of our above examples use Operations:

1. In the baseball example, the Count metric is modified by Distribution(over="
pitchtype"). This operation has two effects: (1) it returns a value for each pitch
type instead of a single aggregate value, and (2) it normalizes these values so that

they sum to 1.

2. In the online retail example, the churn metric (itself a composite of two metrics) is
modified by PercentChange ("experiment", "control"). This operation similarly
alters churn in two ways: (1) it computes the churn rate separately for each exper-
iment arm, and (2) it reports the percent change in churn relative to the control

arm.

3. In the minimum wage example, the employment metric is first modified by AbsoluteChange
("state", "PA"), and subsequently by AbsoluteChange("period", "before"). Each

operation has an effect analogous to PercentChange in the previous example. The

net effect is that we: (1) compute the average employment rate for each state-period
combination, (2) then calculate the difference between states (PA — NJ) for both the
period before and after the minimum wage increase, and (3) calculate the difference
between periods (after — below) of those differences. The chaining of Operations is
possible because an Operation is itself a Metric that can be modified by another

Operation. Therefore, Operations can be chained indefinitely.

One important class of operations are “standard error” operations, which specify a
method of calculating standard errors. For example, the following code would produce

bootstrap standard errors for the difference-in-differences metric above:

(employment_rate
| AbsoluteChange ("STATE_NAME", "PA")
| AbsoluteChange ("PERIOD", "Before"))
| Bootstrap ()

) . compute_on (df)

Since we often need to quantify uncertainty in metrics, “standard error” operations are
very commonly chained with other operations.

Continuing the analogy to field extensions, we can think of adding an operation as
analogous to adding the /- operator to Q. This introduces not only v/2, but also v/3 and
v/—1 to the field. That is, adding an operation is like a field extension of infinite degree.
Operations vastly expand the space of possible metrics, far beyond what we could hope to
achieve by adding new metrics individually.

Operations must modify other metrics; they cannot stand alone as metrics. Just as the
/- operator is not a number, the percent change is not a viable metric by itself. We must
specify a metric of which to calculate the percent change.

By composing metrics and applying operations, we can construct arbitrarily complex
metrics. We can also combine these metrics with different dimensions. To complete the
data analysis, we finally need to specify a data source. These three components of a
data analysis are diagrammed in Figure 1. The input and output data for the churn rate

computation, without any dimension, are illustrated in Figure 2.

Operation(s)

Dimensions

A

,,,,, > compute_on()

Figure 1: The basic flow of a data analysis.

region | experiment | lost
US control 1
EU control 0
US treatmentl | 0
EU treatment3 | 1
UsS control 1
US treatment2 | 0

churn

churn |

N

churn |

Bootstrap()

churn
0.5
experiment | pct_change_of _churn
control 0.0
PercentChange(...) 7| treatmentl 52
treatment2 5.3
treatment3 1.8
experiment | se_pct_change_of churn
control 0.0
PercentChange(...) | treatmentl 0.43
treatment2 0.66
treatment3 0.23

Figure 2: The input and output data schema for the churn rate computation.

3 Comparison with Grammars of Data Manipulation

The idea of calculating metrics over dimensions is reminiscent of the “split-apply-combine”
framework of Wickham (2011). We first split the data into many smaller data sets, one
for each combination of dimensions, called slices. Then, we apply the metric to each slice.
Finally, we combine the results in the output.

In many packages (Gray et al. 1997, McKinney et al. 2010, Wickham & Francois 2014),
the “split-apply-combine” framework is implemented using the “group-by” operator. The
user specifies variables to group by and an aggregation function. However, the grouping
variables do not always correspond neatly to the dimensions, especially when metrics are

modified by operations. To see why, consider the examples from above:

1. To implement the baseball example in dplyr in R (the pandas code would be similar),

the grouping variables have to include the dimensions and the pitch types:

df %>% group_by(pitcher, batter, pitchtype) %>%
count () %>%
group_by(pitcher, batter) %>%

mutate(n / sum(n))

The analysis requires two passes through the data. In the first pass, we count at-bats,
grouping by the dimensions and the pitch type. Then, we aggregate again, but this
time grouping only by the dimensions, in order to calculate the distribution over the

pitch types.

The problem with this workflow is that it is fragile. Suppose we wanted to add a
dimension to this analysis (e.g., month). We would have to change the code above in
multiple places (i.e., both group_bys) to effect this one change. Contrast this with

the Meterstick code above, where the dimensions are specified in only one place.

2. To implement the online retailer example in dplyr, we again have to make two passes

through the data.

df _by_expt <- df %>% group_by(region, experiment) %>%

8

summarize (churn=sum(lost) / n())
df _treated <- filter(df_by_expt, experiment != "control")
df _control <- filter(df_by_expt, experiment == "control")
df _treated %>% inner_join(df_control,
split_by="region",
suffix=c("_treated", "_control)) %>/

mutate(churn_diff=100 * (churn_treated / churn_control - 1))

In the first pass, we group by the dimensions and the experiment. In the second
pass, we join the treated data to the control along the dimensions and calculate the
difference. (This generalizes to more than one treatment arm.) Again, if we wanted
to add a dimension to this analysis, we would need to modify the code in multiple

places: group_by() and inner_join().

3. To implement the difference-in-differences analysis in dplyr,

af %>%

group_by (STATE_NAME, PERIOD) %>%

summarize (EMP_RATE = mean(EMP, na.rm=T)) %>%

pivot_wider (names_from = STATE_NAME,
values_from = EMP_RATE) %>%

mutate (DIFF=NJ - PA) %>/

select (PERIOD, DIFF) %>%

pivot_wider (names_from = PERIOD,
values_from = DIFF) %>%

mutate (DIFF_OF_DIFFS=After - Before)

If we also wanted to report standard errors for these metrics, then the code would be
still more complex. The problem is that the syntax does not mirror intention; a single
element of the analysis corresponds to several locations in the code. The above examples

highlight the “bottom-up” nature of data manipulation, requiring the analyst to specify

low-level details such as what variables to group by at each stage. By contrast, a grammar
of data analysis should be “top-down,” with its primitives matching the elements of the
analysis.

On a practical level, the bottom-up code presented in this section is ill-suited to the
iterative process of data science, where questions are constantly being tweaked and refined.
Data science demands code that is reproducible, reusable, and reviewable. We have already
seen how the bottom-up code is not modular, where changing one element of the analysis

requires changing multiple lines of code.

4 Implementation

In Section 2, we described the interface for Meterstick, a particular implementation of the
grammar of data analysis. In this section, we discuss implementation details that further
illustrate the recursive and composable nature of this grammar.

Before we dive into the details, we emphasize that this implementation is separate from
the grammar; the analyst does not need to understand these implementation details. Once
they specify their intention in the grammar, the library handles the details of carrying out
the analysis, whether on a DataFrame or a SQL database. We specify the implementation
details here because we think they are of independent interest.

The key idea behind the implementation is that every Metric, no matter how complex,
can be represented as a tree of Metric(s). For example, the change in the churn rate
with bootstrap standard errors is represented internally by the tree shown in Figure 3. An
Operation is simply a Metric with children. Each Metric has methods which calculate

the metric on data.

4.1 DataFrames

When data is in a DataFrame, the metric is evaluated using the compute_on method.
This method specifies how to calculate the metric on a given DataFrame over a given set of
dimensions. The implementation differs depending on whether the Metric is an Operation

or not.

10

Metric

Bootstrap()

PercentChange ("experiment", "control")

Sum("lost") ‘ ’ Count ("lost")

Figure 3: Example structure of the metric from the online retailer example.

For simple Metrics which are not Operations, such as Sum, the computation can be
accomplished by simply grouping by the dimensions. Each type of Metric simply needs to

implement the compute () method and specify a default naming pattern, as shown below.

class Metric:

def compute_on(self, data, split_by=None):
if split_by:
res = self.compute(data.groupby(split_by))

else:

res [self.compute (data)]
res = pd.DataFrame (res)
res.columns = self.names

return res

def set_names (self, names):
self._names = names

return self
@property

def names (self):

return getattr(self, '_names', self.default_names)

11

Qattrs.define
class Sum(Metric):

var: str

def compute (self, data):

return datalself.var].sum()

@property
def default_names (self):

return [f'sum_{self.var}']

For Operations, the computation requires passing data down and results up the tree.

Conceptually, the computation can be organized into three steps:
1. preprocess the data,
2. call the compute_on methods of the children on the preprocessed data, and
3. process the results from the children to compute the final metric.

The general Operation class looks as follows.

class Operation(Metric):

def compute_on(self, data, split_by=DNone):
data_preprocessed = self.preprocess(data, by)
child_res = self.compute_children(data_preprocessed, by)

return self.process_results(child_res, by)

Each Operation simply needs to implement the three methods above. Table 1 contains

implementations for the Operations shown in Figure 3.

4.2 SQL

Analyzing data using DataFrames becomes infeasible when the dataset size exceeds avail-

able computer memory. In these situations, data is typically stored in relational databases

12

and analyzed with SQL queries. Therefore, each Metric also has a to_sql method that
generates a SQL query which calculates the metric.?

As before, the implementation differs according to whether the Metric is an Operation
or not. For simple Metrics, the computation can be carried out in a single query. Each

type of Metric needs only to specify a SQL expression that computes it, as shown below.

class Metric:

def sql_aggregate(self, data, dimensions):

Helper function for constructing aggregation queries.

dim_sql = ','.join(dimensions) + ',' if dimensions else ''
groupby = f'GROUP BY ' + ','.join(dimensions) if dim_sql else "'
val_cols = ','.join([f'{s} AS {n}'

for s, n in zip(self.sql, self.names)])

return f'SELECT {dim_sql} {val_cols} FROM {datal} {groupbyl}'

def to_sql(self, data, split_by=DNone):
return self.sql_aggregate(data, split_by)

Qattrs.define
class Sum(Metric):

var: str

@property
def sql(self):
return [f'SUM({self.var}) ']

For Operations, we organize SQL generation into the same three steps (preprocess,
compute on children, and process results) as for DataFrames, except that each step now
returns a SQL subquery instead of a DataFrame. Because each child may add new dimen-
sions to the data, we keep track of these dimensions in the property extra_dims. (This
was not necessary for DataFrames because these dimensions could be stored directly in the

index of the DataFrame itself.)

I'The SQL dialect in the following implementation is GoogleSQL.

13

class Operation(Metric):

def sql_select(self, data, dimensions):

Helper function for constructing select queries.

dim_sql = ','.join(dimensions) + ',' if dimensions else

val_cols = ','.join([f'{s} AS {n}'
for s, n in zip(self.sql, self.names)])

return f'SELECT {dim_sql} {val_cols} FROM {datal}'

def to_sql(self, data, split_by=None):
data_preprocessed = self.preprocess_sql(data, split_by)
children_query = self.children_to_sql(data_preprocessed, split_by)

return self.assemble_query(children_query, split_by)

@property
def extra_dims(self):

return []

Each Operation simply needs to implement the three methods in to_sql, as well as the

extra_dims property. Table 2 contains implementations for the Operations in Figure 3.

4.3 Summary of Features

We have already seen how a grammar of data analysis provides flexibility and adaptabil-
ity as needs evolve, and simplifies code review and maintenance. The Meterstick imple-
mentation of this grammar offers many built-in Metrics, such as Sum, Mean, Quantile,
and Variance, and Operations, such as Distribution, AbsoluteChange, Jackknife and
Bootstrap. It allows these operations to be chained indefinitely, as specified by the gram-
mar. Moreover, Meterstick allows users to define their own metrics (by implementing the
methods described above) and chain them with the built-in Operations to produce even
more analysis pipelines. One common use case is that a data scientist develops a new met-
ric and wants to calculate the metric, along with a confidence interval. If they implement
the metric in Meterstick, then they get a bootstrap or jackknife confidence interval for free.

Meterstick is also able to abstract away the implementation details from the user. For

14

example, when calculating multiple metrics, some intermediate metrics may be shared
across multiple metrics. In this situation, Meterstick caches the values of these intermediate
metrics so that they can be reused, speeding up the computation.

Finally, Meterstick implements the grammar in a backend-agnostic way, meaning that
the same Metric can calculated on a DataFrame or a SQL database by calling compute_on
or to_sql, respectively. This allows analyses to be prototyped on smaller data sets and

scaled seamlessly to data warehouses.

5 Conclusion

A grammar of data analysis must sit at a higher level of abstraction than a grammar of
data manipulation, in order to represent common patterns of data analysis. In this paper,
we have proposed a grammar that can flexibly describe any analysis that can be charac-
terized as “calculating metrics over dimensions,” in a way that allows frequent iteration
over different metrics and different dimensions. We have seen how existing grammars of
data manipulation fail to provide the necessary flexibility and modularity for these types
of analyses. We have demonstrated how to implement this grammar in a backend-agnostic
way so that it can be applied just as easily to small DataFrames in memory as to databases
in the cloud.

This grammar of data analysis is built upon the idea that metrics can be composed and
modified to produce more complex metrics. By providing a common language for expressing
intention, it can improve communication and collaboration among analysts, promote best
practices, and facilitate data exploration and metric development. Moreover, the grammar’s
focus on modularity and reusability can lead to more efficient and maintainable analysis

pipelines.
SUPPLEMENTARY MATERIAL

Meterstick package An open-source implementation of this grammar of data analysis,

as described in 4, is available at https://www.github.com/google/meterstick.

15

A Bootstrap Implementation

Below is the implementation of resample_n_times that is used in Bootstrap.

def resample_n_times(data, split_by, n_rep):
by_sql = ','.join(split_by) + ',' if split_by else ''
input_data = f£'''
SELECT
*)
ROW_NUMBER () OVER (PARTITION BY sample_idx) AS row_number,
CEILING (RAND () * COUNT(*) OVER (PARTITION BY sample_idx))
AS random_row_number,
FROM {data},
UNNEST (GENERATE_ARRAY (1, {n_rep})) AS sample_idx''"'
samples = f£''"'
SELECT b.*
FROM (
SELECT
{by_sql}
sample_idx,
random_row_number AS row_number
FROM Data) AS a
JOIN Data AS b
USING ({by_sql} sample_idx, row_number)'''

return (input_data, samples)

References

Card, D. & Krueger, A. B. (1994), ‘Minimum wages and employment: A case study of
the fast-food industry in new jersey and pennsylvania’, The American Economic Review

84(4), T72-793.
Dummit, D. S. & Foote, R. M. (2004), Abstract algebra, Wiley.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow,

16

F. & Pirahesh, H. (1997), ‘Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals’, Data mining and knowledge discovery 1(1), 29-53.

McKinney, W. et al. (2010), Data structures for statistical computing in python, in ‘Pro-
ceedings of the 9th Python in Science Conference’, Vol. 445, Austin, TX, pp. 51-56.

Van Der Walt, S., Colbert, S. C. & Varoquaux, G. (2011), ‘The numpy array: a structure

for efficient numerical computation’, Computing in science & engineering 13(2), 22-30.

Wickham, H. (2009), ggplot2: elegant graphics for data analysis, Springer Science & Busi-

ness Media.

Wickham, H. (2010), ‘A layered grammar of graphics’, Journal of Computational and
Graphical Statistics 19(1), 3-28.

Wickham, H. (2011), ‘The split-apply-combine strategy for data analysis’, Journal of Sta-
tistical Software 40(1), 1-29.

Wickham, H. & Francois, R. (2014), ‘dplyr: A grammar of data manipulation’, R package
version 0.3. 0.2 .

Wilkinson, L. (2006), The grammar of graphics, Springer Science & Business Media.

17

Operation

Qattrs.define

class Div(Operation):
childl: Metric
child2: Metric

Qattrs.define

class PercentChange(Operation) :

condition: str
baseline: str

child: Optional [Metric]=None

Qattrs.define
class Bootstrap(Operation) :
n_rep: int

child: Optional[Metric]=None

def preprocess(
self,
data,

split_by):

def compute_children(
self,
data,

split_by):

def process_results(
self,
child_res,

split_by):

Q@property

def default_names(self):

return data

return (
self.childl.compute_on(
data, split_by),
self.child2. compute_on(
data, split_by))

num, denom = child_res
num.columns = self.names
denom.columns = self.names

return num / denom

return map('_div_'

.join,
zip(self.childl.names,

self.child2.names))

return data

return self.child.compute_on(
data,
split_by + [

self.condition])

if split_by:
base = child_res.xs(
self .baseline,
level=self.condition)
else:
base = child_res.loc[
self.baseline]
res = child_res / base - 1
res.columns = self.names

return res * 100

return [f'pct_change_of_{n}'

for n in self.child.names]

for i in range(self.n_rep):
yield data.sample(

frac=1, replace=True)

sample_res = [
self.child.compute_on(
sample, split_by)
for sample in datal
return pd.concat(

sample_res, axis=1)

std = child_res.T.groupby(
level=0).std().T
std.columns = self.names

return std

return [f'se_{n}'

for n in self.child.names]

Table 1: The computation for each Operation in Figure 3 requires three steps.

18

Operation

Qattrs.define
class Div(Operation):
childl: Metric

child2: Metric

Qattrs.define

class PercantChange (Operation) :
condition: str

baseline: str

child: Optional[Metric]=None

Qattrs.define
class Bootstrap(Operation):
n_rep: int

child: Optional[Metric]=None

def preprocess_to_sql(
self, data,

split_by):

def children_to_sql(
self, data,

split_by):

def assemble_query(

return data

return data

return self.sql_aggregate(

return data

return self.child.to_sql(
data, split_by + [

self.condition])

dims = self.extra_dims + split_by

resample_n_times is defined
in the Appendiz due to space
return resample_n_times(

data, split_by, self.n_rep)

return (xdata,
self.child.to_sql('Samples',
split_by + ['sample_idx']))

(input_data, samples,

self, child_res, split_by) u=",".join(dims[1:]) sample_res) = child_res
child_res, join = £'T JOIN Base USING ({u})' | sql = self.sql_aggregate(
split_by): if not u: 'SampleRes',
join = 'T CROSS JOIN Base' by + self.extra_dims)
return f''' return f'"'
WITH T AS ({child_res}), CREATE TEMP TABLE Data
Base AS (SELECT =* AS ({input_datal});
EXCEPT ({self.condition}) FROM T WITH Samples AS ({samples}),
WHERE {self.condition} SampleRes AS ({sample_res})
= '{self.baseline}') {sql}'""’
{self.sql_select(join, dims)}'"'
@property return map(' / '.join, return [return [f'STDDEV({n})'

def sql(self):

zip(self.childl.sql,
self.child2.sql))

£f'(T.{c} / Base.{c} - 1) * 100"

for ¢ in self.child.names]

for n in self.child.names]

@property

def extra_dims(self):

return []

return ([self.condition] +

self.child.extra_dims)

return self.child.extra_dims

Table 2: The SQL generator for the Operations in Figure 3.

19

