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Abstract

Voice activity detection (VAD) in the presence of heavy, non-stationary noise is a chal-
lenging problem that has attracted attention in recent years. Most modern VAD systems
require training on highly specialized data: either labeled mixtures of speech and noise that
are matched to the application, or, at the very least, noise data similar to that encountered
in the application. Because obtaining labeled data can be a laborious task in practical
applications, it is desirable for a voice activity detector to be able to perform well in the
presence of any type of noise without the need for matched training data. In this paper, we
propose a VAD method based on non-negative matrix factorization. We train a universal
speech model from a corpus of clean speech but do not train a noise model. Rather, the
universal speech model is sufficient to detect the presence of speech in noisy signals. Our
experimental results show that our technique is robust to a variety of non-stationary noises
mixed at a wide range of signal-to-noise ratios and outperforms a baseline.

Index Terms: non-negative matrix factorization, voice activity detection, universal models

1 Introduction

Voice activity detection (VAD) refers to the problem of identifying the speech and non-speech
segments in an audio signal. It is a front-end component of many speech processing systems,
including robust speech recognition [1, 2, 3] and compression systems for low-bandwidth trans-
mission [4, 5].

Heavy and non-stationary noise pose serious challenges to VAD systems, and research in
recent years has focused on developing robust systems [6]. A typical modern VAD system is
trained either on mixtures of speech and noise that are matched to the application and have
been labeled with voice activity (supervised learning) [7, 8, 9], or at the very least on noise data
similar to the noise encountered in the application (semi-supervised learning) [10, 11, 12, 13].
In the latter case, the methods implicitly assume that noise training data is available because
they require an initialization of a noise model. The semi-supervised methods listed above are
also based on parametric assumptions about the noise (e.g., Gaussianity) that may be grossly
violated in non-stationary noise environments.

It can be difficult and laborious to obtain such specialized training data. Thus, it is desirable
to design a VAD system that is both unsupervised, in that it can operate without training data,
and robust, in that it can handle a variety of noise environments over a wide range of signal-
to-noise ratios. Earlier VAD systems, such as G.729B [4] and AMR [5], followed a rule-based
approach and thus required no training data. They have largely been superseded by statistical
and classification-based approaches, which are more robust and produce superior results [7, 8],
but require labeled training data. Recently, there has been interest in developing unsupervised
VAD systems that have the performance advantages of supervised systems. The usual approach
has been to add an element of adaptivity to existing supervised and semi-supervised methods
[14, 15].
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Figure 1: A schematic for the proposed method. The method is comprised of two main stages,
feature extraction (first row) and classification (second row).

We propose a different approach, based on non-negative matrix factorization (NMF), a
popular model in the source separation literature [16, 17]. In contrast to the aforementioned
VAD approaches, we explicitly model the mixture of sounds (speech and noise). This has the
advantage that if one has a reasonable general model for speech, then the approach will work
in any noise environment. We will describe in detail how to obtain such a wuniversal speech
model in the next section, but generally speaking, this model is trained on a database of clean
speech from a number of speakers. Once it is learned, it can be used to detect speech (from
any unseen speaker) in any noise environment. Therefore, once the system is deployed, it is
unsupervised from a user’s perspective. Our approach also has the advantage of being fully
interpretable—the features we use for classification correspond exactly to the relative levels of
the speech and noise if we were to use this model for separation.

2 Proposed Method

Like most approaches to voice activity detection, our approach proceeds in two stages: feature
extraction, followed by classification. The two stages are shown in the first and second rows,
respectively, of Figure 1. Both the feature extraction and classification come naturally out of
models for source separation. We describe each stage in turn in the subsections below.

2.1 Feature Extraction

Because humans tend to perceive spectral features of audio—at least on short time scales—it is
natural to use frequency-domain rather than time-domain features in audio processing. This is
well-known in speech processing, where mel-frequency cepstral coefficients (MFCCs) have long
been standard features. In source separation, it is typical to work with invertible transforms,
such as the Short-Time Fourier Transform (STFT), because it is necessary to recover the time-
domain signals.

Audio signals are additive, so each frame of a magnitude spectrogram is roughly the sum
of the spectral features that comprise it. If we think of a magnitude spectrogram as a matrix
V := (V) of non-negative numbers so that each column is the spectrum at time ¢, then this is
saying that each column of the matrix can be written as:

Vier Y HgW
k

where W, denotes a spectral feature (indexed by k) and Hy, is the activation of that feature
at time t. The critical assumption we will make is that these spectral features remain the same
across all time. Since all sounds must be generated from this fixed set of spectral features,



we say that (W,)E | is a model for the sound class. If we define matrices W = (Wyy,) and
H := (Hjy), then the above statement can be restated in matrix form as

V ~WH. (1)

Non-negative matrix factorization (NMF) [18] is a method for uncovering these spectral
features W and the corresponding activations H from a magnitude spectrogram V [16]. It
solves the optimization problem

minimize D(V||[WH) (2)
W,H>0

for some measure of divergence D between V and W H. The non-negativity constraint ensures
that the factors W and H can be interpreted as energies and activations.

Turning to the problem at hand, if we have a mixture of speech and noise, then W is
comprised of a model for speech Wg and a model for noise Wy, i.e. we can partition (1) as:

V ~ [Ws mﬂﬁﬁ] (3)
where Hg and Hy are matrices containing the activations of the speech and noise features,
respectively.

However, applying NMF directly to the mixture spectrogram will not yield the representation
(3), since it is impossible to identify the speech features Wg apart from the noise features Wy.
However, if one is able to learn either Wg or Wy from clean training data and fix these quantities
in applying NMF to the mixture spectrogram, then there is enough structure to distinguish the
two sources. This is known as semi-supervised (if one of Wg and Wy is fixed) or supervised
learning (if both are fixed) in the source separation literature [19].

In source separation, one also faces the problem of obtaining clean training data of the
sources to be separated. Because existing algorithms depend on clean examples of the specific
speaker and/or noise encountered in the mixture, they have difficulty generalizing to unseen
speech and noise. We recently proposed a source separation technique [20], which leverages
the knowledge that one of the sources is speech to perform source separation. The idea is to
learn a model from clean speech examples from many different speakers (but not necessarily
the speaker in the recording) and then incorporate this so-called “universal” speech model into
the source separation pipeline. This is accomplished by learning a model W@ for each speaker
g = 1,...,G in the speech corpus and then adding a penalty in the optimization criterion to
encourage the activation coefficients H (@) of most of the speakers to be zero. In other words,
we now have the model:
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where many of the H are entirely zero so that the corresponding speaker model W) is
effectively not used. This captures the intuition that only a few models should be necessary to
explain any given speaker and ensures robustness against poorly fitting speaker models in the
speech corpus.

In order to encourage many of the blocks H9) to be zero, we add a regularization term to
the NMF problem (2) that encourages block sparsity.

G
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where H = [Hg HN]T = [H(l) .. HG) HN]T, leaving the user with the choice of A,
which controls the tradeoff between separation and artifacts. We consider the case where D is
Kullback-Leibler divergence, denoted Dgr,.

The algorithm for solving (5) with KL divergence is called Block KL-NMF and presented in

Algorithm 1. We refer the reader to [20] for the derivation.

Algorithm 1 Block KL-NMF
inputs V, Wg
initialize H, W = [Wg Wy| (assuming 17W = 1)
repeat
R+ V./(WH)
H«+ H*(WTR)
forg=1:M do
1
H
L+ M/(B + ([ Hyl[1) ™

Hy +

end for

Wy « Wy.*(RHY)

Wy < Wy./(11TWy) (renormalize W)
until convergence return H

 and ./ denote componentwise multiplication and division.

2.2 Classification

After solving (5), classifying each time frame as either speech or non-speech is straightforward.
We simply sum up the speech activations a; = Efjl Hjy, where Kg is the total number of
speech features, to produce a single activity number for each frame. After median filtering a;
to produce a smoothed estimate a;, we classify a frame as speech if a; > ¢ and non-speech
otherwise. The user can adjust the threshold ¢ depending on the desired true-positive and
false-positive tradeoff.

Note that our classification algorithm depends only on the speech activations and not on the
noise activations. This ensures that our algorithm is robust to non-stationary noise environments
where the signal-to-noise ratio may be fluctuating.

3 Experiments

In this section, we determine parameter settings for our method and evaluate its performance
relative to existing methods.

3.1 Data

We trained universal models with N = 10,20, 30,40, 50,60 speakers (half male, half female)
from the TIMIT speech database and K = 5, 10, 20, 30, 40, 50 features per speaker.

We then formed a synthetic data set using speech from held-out speakers in the TIMIT
database, mixed with a variety of stationary and non-stationary noise samples from two different
sources: the NOISEX-92 database [21] and the noise examples used in Duan et al., which we
will refer to as the Duan data set [22]. Whereas the former contains primarily stationary noise
examples, the latter is comprised of highly non-stationary noise examples. We considered signal-
to-noise ratios of —12,—6,0, and 6 dB. The duration of each mixture signal was 30 seconds,
with several speech segments interspersed throughout the examples. Each speech segment is a
TIMIT sentence, which is approximately 3-seconds long.



The sampling rate of all examples was 16kHz, and the signals were processed using a Hann
window of length 64ms and a hop size of 16ms.

3.2 Parameter Determination

To determine optimal parameter settings, we divided the data set of speech and noise mixtures
into a development and a test set. For each parameter setting, we applied the pipeline shown
in Figure 1 to the examples in the development set. As we vary the decision threshold ¢ for
classifying a time frame as speech, we obtain a tradeoff between the false positive and false
negative rates. We used the accuracy at the equal error rate (EER), for comparing the different
parameter settings. This is the error rate at which the false positive and false negative rates
are equal.

This parameter sweep uncovered N = 20 and K = 10 as the optimal parameters for the
universal model. Although in principle it is possible to choose the number of noise spectral
features Ky depending on the noise environment, in the interest of automating the VAD system,
we also conducted a sweep over K, finding the optimal number over a wide class of noises to
be K = 10. Also, although the optimal group sparsity parameter A ideally should depend on
the SNR, for simplicity we also determine a single optimal value over all the examples, finding
A = 4096. Finally, we found a median filter on blocks of 70 frames to work best. This set of
parameters was used on the test set in the experiments below.

3.3 Baselines

We compare the proposed method to two existing methods [4, 14]. Both are natural candidates
for comparison to our method because they neither require training data from the user, nor
assume that the beginning of the signal contains no speech. The first method, the G.729B VAD
[4], is a classical algorithm that extracts several acoustical features combined together by fuzzy
rules to produce a single decision for each frame. The second method is a recent unsupervised
technique based on sequential Gaussian mixture models (SGMM) [14]. We used the standard
C implementation of G.729B and an implementation of SGMM provided by the authors. As
shown in Section 3.4, the proposed method significantly outperforms both baselines.

3.4 Experimental results

Figures 2 and 3 show the filtered activity curves for two different noise environments: keyboard
noise (non-stationary) and jet fighter noise (stationary). The black line at the NOISEX-92 top
shows the decision at the EER threshold (dotted line), and the gray line below shows the ground
truth.

To obtain ROC curves, we vary the decision threshold ¢ on the median-filtered activity curve
estimated from the signal. For each value of the threshold, we compute the true positive rate
(TPR) and false positive rate (FPR). We also vary a decision threshold to compute the ROC
curve for the SGMM model. These curves are shown in Figures 4 and 5 for three different noises
each from the NOISEX-92 and Duan data sets at three different SNRs: —6 dB, 0 dB, and 6
dB. We also show the TPR and FPR for the G.729B VAD as a single point on these plots.

To facilitate comparison with G.729B VAD, we also tabulated the accuracy (the percentage
of correctly labeled frames) at the EER threshold for our method and the SGMM. These
numbers are shown in Tables 1 and 2. Both the ROC curves and tables confirm that our
method significantly outperforms existing approaches in a wide variety of noise environments,
even in challenging heavy noise environments.
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Figure 2: Median-filtered activity curve for keyboard background noise from the Duan data set
for 6dB SNR (top) and -6dB SNR (bottom). The VAD decision at the EER threshold (black)
and ground truth (gray) are shown at the top.

L Signal energy
—— Filtered activity

L — — EER threshold

r T =TT I et A et

0 200 400 600 800 1000 1200 1400 1600 1800

Frame number

il [ S | —

. . . . . . . . .
0 200 400 600 800 1000 1200 1400 1600 1800
Frame number

Figure 3: Median-filtered activity curve for the Buccaneer figher jet noise from NOISEX-92 for
6dB SNR (top) and -6dB SNR (bottom). The VAD decision at the EER threshold (black) and
ground truth (gray) are shown at the top.

4 Conclusion

We have presented a method based on non-negative matrix factorization for performing voice
activity detection that requires no training data from the user and is robust to changes in the
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Figure 4: ROC curves for 3 examples of noise background from the NOISEX-92 data set mixed
at 3 SNRs. For comparison, the result of SGMM (dashed) and the G.729B VAD ({) are shown.
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Figure 5: ROC curves for 3 examples of noise background from the Duan data set mixed at 3
SNRs. For comparison, the result of SGMM (dashed) and the G.729B VAD (¢) are shown.

noise environment. In particular, our method is able to handle a variety of non-stationary noises
at low signal-to-noise ratios. Our experiments show that this approach significantly outperforms
existing approaches.

However, it is important to note that the proposed approach is a batch algorithm, whereas in
many applications an online method that performs real-time voice activity detection is desired.
We believe that recent work on online extensions of NMF-based source separation [22] can be
adapted to the universal speech model, making an online version of the proposed approach
possible. However, we defer this and other extensions to future work.
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Accuracy (%)
SNR Proposed | SGMM [14] ‘ G.729B [4]

6dB 94.1 78.2 69.9
0dB 91.5 76.0 65.4
—6dB 84.7 69.1 58.5
—12dB 76.0 63.3 53.6

Table 1: Average accuracy of the proposed method and of the baseline methods with the
NOISEX-92 background noises. For our method and SGMM, the accuracy is computed at the
EER.

Accuracy (%)
SNR Proposed | SGMM [14] | G.729B [4]

6dB 92.7 67.7 62.7
0dB 90.1 64.1 61.0
—6dB 85.4 60.3 58.2
—12dB 76.6 55.5 55.7

Table 2: Average accuracy of the proposed method and of the baseline methods with the Duan
background noises. For our method and SGMM, the accuracy is computed at the EER.
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