Wald's Identity and Geometric Expectation

A geometric random variable N is the number of independent Bernoulli trials until the first success. If each trial has a probability p of success, then the probability that k trials are needed is $P(N=k)=(1-p)^{k-1} p$ for $k=1,2,3, \ldots$.

Calculating the expected value $\mathrm{E}[N]$ involves evaluating the power series $\sum_{k=1}^{\infty} k(1-p)^{k-1} p$, which can be identified as the derivative of a geometric series. Hong [1] surveys eight different ways to calculate this expected value.

We offer a shorter derivation that formalizes the intuition that the expectation should be the inverse of the success probability. It relies on Wald's identity for the sum of a random number N of i.i.d. random variables X_{1}, X_{2}, \ldots :

$$
\begin{equation*}
\mathrm{E}\left[\sum_{i=1}^{N} X_{i}\right]=\mathrm{E}[N] \mathrm{E}\left[X_{1}\right] \tag{1}
\end{equation*}
$$

Most probability students learn a special case of this identity, when N is independent of X_{1}, X_{2}, \ldots [3, p. 340], but the identity holds more generally, as long as N is a stopping time-that is, $\{N=n\}$ is independent of X_{n+1}, X_{n+2}, \ldots for all n [2, p. 105]. In other words, the decision to stop at time n can only depend on the values seen so far; it cannot depend on future values. With stopping times and Wald's identity, the geometric expectation is immediate.

Proposition. $\mathrm{E}[N]=1 / p$.
Proof. Let X_{1}, X_{2}, \ldots be i.i.d. $\operatorname{Bernoulli}(p)$ random variables representing the trials. The geometric random variable N is a stopping time and can be formally defined in terms of the X_{i} 's as $N:=\inf \left\{n: X_{n}=1\right\}$.

By definition, $\sum_{i=1}^{N} X_{i}=1$ (almost surely), since every term in the sum is 0 except for the last, which is 1 . So the expectation of the random sum is 1 as well. But we can also expand the expectation using (1). Equating the two expressions,

$$
\begin{equation*}
1=\mathrm{E}\left[\sum_{i=1}^{N} X_{i}\right]=\mathrm{E}[N] \mathrm{E}\left[X_{1}\right] \tag{2}
\end{equation*}
$$

Solving for $\mathrm{E}[N]$, we see that $\mathrm{E}[N]=1 / E\left[X_{1}\right]=1 / p$.
Similar arguments appear in renewal theory. For example, Ross [2, p. 104106] uses (1) to calculate the expected number of coin flips to to get 10 heads.

REFERENCES

1. Hong, L. (2014). Two new elementary derivations of geometric expectation. Amer. Statist. 68(3): 188-190.
2. Ross, S. (1996). Stochastic Processes, 2nd ed. New York, NY: Wiley.
3. Ross, S. (2014). A First Course in Probability, 9th ed. Boston, MA: Pearson.
—Submitted by Dennis L. Sun, California Polytechnic State University
doi.org/10.XXXX/amer.math.monthly.122.XX.XXX
MSC: Primary 60E05, Secondary 60G40; 60G50
