Lecture 2 Categorical Variables

Dennis Sun Stanford University DATASCI / STATS 112

January 11, 2023

Tabular Data

• How is tabular data commonly stored on disk? in a CSV (comma-separated values) file

• How is tabular data represented in Python?

as a Pandas DataFrame.

[2] # Read in the Titanic data set using the Pandas `read_csv` function. df_titanic = pd.read_csv("https://dlsun.github.io/stats112/data/titanic.csv")

To look at the data, we make `df_titanic` the last line of the cell so that # the output is printed. df titanic

	name	pclass	survived	sex	age	sibsp	parch	ticket	fare	cabin	embarked	boat	body	home.dest
0	Allen, Miss. Elisabeth Walton	1	1	female	29.0000	0	0	24160	211.3375	B5	s	2	NaN	St Louis, MO
1	Allison, Master. Hudson Trevor	1	1	male	0.9167	1	2	113781	151.5500	C22 C26	S	11	NaN	Montreal, PQ / Chesterville, ON
2	Allison, Miss. Helen Loraine	1	0	female	2.0000	1	2	113781	151.5500	C22 C26	s	NaN	NaN	Montreal, PQ / Chesterville, ON
3	Allison, Mr. Hudson Joshua Creighton	1	0	male	30.0000	1	2	113781	151.5500	C22 C26	s	NaN	135.0	Montreal, PQ / Chesterville, ON
4	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	1	0	female	25.0000	1	2	113781	151.5500	C22 C26	s	NaN	NaN	Montreal, PQ / Chesterville, ON
1304	Zabour, Miss. Hileni	3	0	female	14.5000	1	0	2665	14.4542	NaN	С	NaN	328.0	NaN
1305	Zabour, Miss. Thamine	3	0	female	NaN	1	0	2665	14.4542	NaN	С	NaN	NaN	NaN
1306	Zakarian, Mr. Mapriededer	3	0	male	26.5000	0	0	2656	7.2250	NaN	С	NaN	304.0	NaN
1307	Zakarian, Mr. Ortin	3	0	male	27.0000	0	0	2670	7.2250	NaN	с	NaN	NaN	NaN
1308	Zimmerman, Mr. Leo	3	0	male	29.0000	0	0	315082	7.8750	NaN	S	NaN	NaN	NaN

1309 rows × 14 columns

Any Questions?

Summarizing One Categorical Variable

To summarize a categorical variable, we can report the **counts** of each possible class.

We can get the possible classes and their counts using the method **Series**.value_counts().

For example, we can summarize the variable "pclass" by:

df_titanic["pclass"].value_counts()

3 709
 1 323
 2 277
 Name: pclass, dtype: int64

Summarizing One Categorical Variable

Instead of reporting counts, we can instead report the **proportion** of times each possible class occurs.

 $proportion = \frac{count}{total}.$

For example, we can also summarize the variable "pclass" by:

df_titanic["pclass"].value_counts(normalize=True)

3	0.541635	Notice that the values
1	0.246753	
2	0.211612	In a distribution and up
Name	: pclass, dtype: float64	to 1.0!

This is called the **distribution** of the variable "pclass".

What information have we lost by reporting the distribution instead of counts?

Summarizing One Categorical Variable

Proportions can be converted to percentages for readability:

percentage = proportion
$$\times 100\% = \frac{\text{count}}{\text{total}} \times 100\%.$$

df_titanic["pclass"].value_counts(normalize=True) * 100

54.163484
 24.675325
 21.161192
 Name: pclass, dtype: float64

If we multiply a **series** by 100, every value gets multiplied by 100. That's because operations in Pandas are **vectorized**.

This should remind you of math! If you have a vector $\vec{v} = (v_1, v_2, ..., v_n)$, then

 $100\vec{v} = (100v_1, 100v_2, \dots, 100v_n).$

Visualizing One Categorical Variable

To visualize a categorical variable, we make a **bar plot**.

For example, we can visualize the variable "pclass" by:

df_titanic["pclass"].value_counts().plot.bar()

Why is this graph not ideal?

Visualizing One Categorical Variable

When you use .value_counts(), the classes are ordered by count:

- 3 709
- 1 323
- 2 277

Name: pclass, dtype: int64

But in this case, there is a natural ordering: 1st, 2nd, 3rd.

df_titanic["pclass"].value_counts().sort_index().plot.bar()

```
counts_pclass = df_titanic["pclass"].value_counts()
counts_pclass.sort_index().plot.bar()
```


Visualizing One Categorical Variable

How would the bar plot change if we replaced counts by proportions?

The scale on the y-axis changes, but the shape is the same.

To appreciate why proportions are useful, we need to look at *more than* 1 categorical variable.

4 Reminders

Summarizing 2+ Categorical Variables

To summarize 2+ categorical variables, we report the **counts** of every possible combination.

We can use the method DataFrame.value_counts().

For example, we can summarize the variables "pclass" and "survived" by:

<pre>df_titanic[["pclass", "survived"]].value_counts()</pre>							
pclass	survived						
3	0	528					
1	1	200					
3	1	181					
2	0	158					
1	0	123					
2	1	119					
dtvne·	int64						

Summarizing 2+ Categorical Variables

pclass	survived	
3	0	528
1	1	200
3	1	181
2	0	158
1	0	123
2	1	119
dtype:	int64	

Let's make this information easier to digest by arranging one variable along the rows and the other along the columns.

```
counts = df_titanic[["pclass", "survived"]].value_counts()
counts.unstack("survived")
```

survived	0	1
pclass		
1	123	200
2	158	119
3	528	181

This representation is called a **two-way table** or a **crosstab** (short for "cross-tabulation").

Visualizing 2+ Categorical Variables

5	survived	0	1
	pclass		
	1	123	200
	2	158	119
	3	528	181

From a crosstab, it is easy to make a visualization.

```
crosstab = counts.unstack("survived")
crosstab.plot.bar()
```


Remember when I said that it's sometimes easier to compare proportions than counts? Let's calculate proportions!

survived	0	1
pclass		
1	123	200
2	158	119
3	528	181
crosstab		

Now we need to divide the crosstab by the sum.

totals_pclass = crosstab.sum(axis="columns")
crosstab.divide(totals_pclass, axis="rows")

survived	0	1
pclass		
1	0.380805	0.619195
2	0.570397	0.429603
3	0.744711	0.255289

This is the **conditional distribution** of **survived**, given **pclass**:

p(survived|pclass).

Visualizing Conditional Distributions

To visualize a conditional distribution, we use a **stacked bar plot**:

survived_given_pclass = crosstab.divide(totals_pclass, axis="rows")
survived_given_pclass.plot.bar(stacked=True)

In-Class Exercise

We calculated p(survived|pclass) above.

survived	0	1
pclass		
1	0.380805	0.619195
2	0.570397	0.429603
3	0.744711	0.255289

What would p(pclass|survived) look like?

Click here to calculate it in Colab!

The conditional distributions are not the same! What's different?

 $p(\text{survived}|\text{pclass}) = \frac{\# \text{ survived } \& \text{ pclass}}{\# \text{ pclass}} \qquad \text{What changes} \\ p(\text{pclass}|\text{survived}) = \frac{\# \text{ survived } \& \text{ pclass}}{\# \text{ survived}} \qquad \text{(denominator!)}$

- Work through the Colab "Case Study Comparing COVID Rates".
- Come to section tomorrow prepared to present the exercises in this Colab.
- I have office hours now until noon. (Sorry, I have a meeting at noon. I will be around in the afternoon. Amber has office hours 1:30-2:30.)
- Post on the Ed Discussion board if you have any questions!

