Lecture 16 Classification and *K*-Nearest Neighbors

Dennis Sun Stanford University DATASCI / STATS 112

February 17, 2023

2 Case Study: Breast Tissue Classification

3 K-Nearest Neighbors Classification

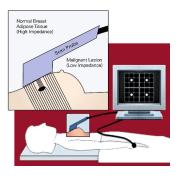
2 Case Study: Breast Tissue Classification

- ${rac{3}{3}}\ K$ -Nearest Neighbors Classification
- 4 Reminders

So far, we've been looking at **regression** problems, where the label y we are trying to predict is quantitative (e.g., price of wine).

Today, we switch to **classification** problems, where the label y is categorical.

We will focus on the differences between regression and classification.


2 Case Study: Breast Tissue Classification

- ${f 3}$ K-Nearest Neighbors Classification
- 4 Reminders

Breast Tissue Classification

Electrical signals can be used to detect whether tissue is cancerous.

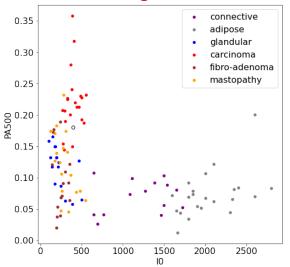
The goal is to determine whether a sample of breast tissue is:

- 1. connective tissue
- 2. adipose tissue
- 3. glandular tissue

- 4. carcinoma
- 5. fibro-adenoma
- 6. mastopathy

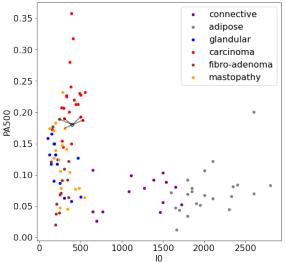
Reading in the Data

```
import pandas as pd
df_breast = pd.read_csv(
    "http://dlsun.github.io/stats112/data/BreastTissue.csv")
df_breast
```


	Case #	Cla	ass	10	PA500	HFS	DA	Area	A/DA	Max IP	DR	P
0	1		car	524.794072	0.187448	0.032114	228.800228	6843.598481	29.910803	60.204880	220.737212	556.828334
1	2	2	car	330.000000	0.226893	0.265290	121.154201	3163.239472	26.109202	69.717361	99.084964	400.225776
2	3	3	car	551.879287	0.232478	0.063530	264.804935	11888.391827	44.894903	77.793297	253.785300	656.769449
3	4	ļ.	car	380.000000	0.240855	0.286234	137.640111	5402.171180	39.248524	88.758446	105.198568	493.701814
4	Ę	5	car	362.831266	0.200713	0.244346	124.912559	3290.462446	26.342127	69.389389	103.866552	424.796503
101	102	2	adi	2000.000000	0.106989	0.105418	520.222649	40087.920984	77.059161	204.090347	478.517223	2088.648870
102	103	3	adi	2600.000000	0.200538	0.208043	1063.441427	174480.476218	164.071543	418.687286	977.552367	2664.583623
103	104	ŀ	adi	1600.000000	0.071908	-0.066323	436.943603	12655.342135	28.963331	103.732704	432.129749	1475.371534
104	105	5	adi	2300.000000	0.045029	0.136834	185.446044	5086.292497	27.427344	178.691742	49.593290	2480.592151
105	106	3	adi	2600.000000	0.069988	0.048869	745.474369	39845.773698	53.450226	154.122604	729.368395	2545.419744
106 rc	ws × 11	colum	ns									

We will focus on two features:

- I_0 : impedivity at 0 kHz,
- PA_{500} : phase angle at 500 kHz.



Visualizing the Data

Consider a new sample, with an I_0 of 400 and a PA_{500} of 0.18. What kind of tissue is it?

Visualizing the Data

Of its 5 nearest neighbors in the training data: 3 are carcinomas, 1 is fibro-adenoma, 1 is mastopathy, so our best guess is that it is a carcinoma.

2 Case Study: Breast Tissue Classification

3 K-Nearest Neighbors Classification

K-Nearest Neighbors

```
X_train = df_breast[["IO", "PA500"]]
y_train = df_breast["Class"]
x_test = pd.Series({"IO": 400, "PA500": .18})
```

Here is code we used for k-nearest neighbor regression.

What would need to change for classification?

K-Nearest Neighbors

```
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline

pipeline = make_pipeline(
    StandardScaler(),
    KNeighborsClassifier(n_neighbors=5, metric="euclidean"))
pipeline.fit(X_train, y_train)
pipeline.predict(pd.DataFrame([x_test]))
array(['car'], dtype=object)
```

Instead of returning a single predicted class, we can ask it to return the predicted probabilities for each class.

```
pipeline.predict_proba(pd.DataFrame([x_test]))
array([[0. , 0.6, 0. , 0.2, 0. , 0.2]])
pipeline.classes_
array(['adi', 'car', 'con', 'fad', 'gla', 'mas'], dtype=object)
How did Scikit-Learn calculate these predicted probabilities?
```

Cross-Validation for Classification

Here is code we used to cross-validate a regression model.

```
from sklearn.model_selection import cross_val_score

cross_val_score(
   pipeline, X_train, y_train,
   scoring="neg_mean_squared_error",
   cv=10)
```

What would need to change for classification?

We need a different scoring method for classification. A simple one is **accuracy**:

$$accuracy = \frac{\text{\# correct predictions}}{\text{\# predictions}}.$$

Cross-Validation for Classification

As before, we can get an overall estimate of test accuracy by averaging the cross-validation accuracies:

```
scores.mean()
```

0.5836363636363637

Accuracy is not always the best measure of a classification model. We'll talk about some better measures next time.

2 Case Study: Breast Tissue Classification

3 K-Nearest Neighbors Classification

- Assignment 4 is due Monday. Start early, so you can maximize the number of Kaggle submissions.
- There is no class on Monday (Presidents' Day), but I will hold office hours at the usual time on Zoom. Check the website for the Zoom link.
- In section on Tuesday, you will pair up with a partner and get started on Assignment 5. You do not need to prepare anything!

