Lecture 20 Combining Datasets

Dennis Sun Stanford University DATASCI / STATS 112

March 1, 2023

Why Combine Datasets?

Sometimes, information is spread across multiple datasets.

For example, suppose we want to know which manufacturer's planes are most common.

One dataset may contain information about flights...

```
import pandas as pd
data_dir = "http://dlsun.github.io/stats112/data/nycflights13/"
df_flights = pd.read_csv(data_dir + "flights.csv")
df_flights
```

	year	month	day	dep_time	sched_dep_time	 air_time	distance	hour	minute	tailnum
0	2013	1	1	517.0	515	 227.0	1400	5	15	N14228
1	2013	1	1	533.0	529	 227.0	1416	5	29	N24211
2	2013	1	1	542.0	540	 160.0	1089	5	40	N619AA
3	2013	1	1	544.0	545	 183.0	1576	5	45	N804JB
4	2013	1	1	554.0	600	 116.0	762	6	0	N668DN
336771	2013	9	30	NaN	1455	 NaN	213	14	55	NaN
336772	2013	9	30	NaN	2200	 NaN	198	22	0	NaN
336773	2013	9	30	NaN	1210	 NaN	764	12	10	N535MQ
336774	2013	9	30	NaN	1159	 NaN	419	11	59	N511MQ
336775	2013	9	30	NaN	840	 NaN	431	8	40	N839MQ

Why Combine Datasets?

...while another contains information about planes.

```
df_planes = pd.read_csv(data_dir + "planes.csv")
df_planes
```

	tailnum	year	type	manufacturer	mode1	engines	seats	speed	engine
0	N10156	2004.0	Fixed wing multi engine	EMBRAER	EMB-145XR	2	55	NaN	Turbo-fan
1	N102UW	1998.0	Fixed wing multi engine	AIRBUS INDUSTRIE	A320-214	2	182	NaN	Turbo-fan
2	N103US	1999.0	Fixed wing multi engine	AIRBUS INDUSTRIE	A320-214	2	182	NaN	Turbo-fan
3	N104UW	1999.0	Fixed wing multi engine	AIRBUS INDUSTRIE	A320-214	2	182	NaN	Turbo-fan
4	N10575	2002.0	Fixed wing multi engine	EMBRAER	EMB-145LR	2	55	NaN	Turbo-fan
3317	N997AT	2002.0	Fixed wing multi engine	BOEING	717-200	2	100	NaN	Turbo-fan
3318	N997DL	1992.0	Fixed wing multi engine	MCDONNELL DOUGLAS AIRCRAFT CO	MD-88	2	142	NaN	Turbo-fan
3319	N998AT	2002.0	Fixed wing multi engine	BOEING	717-200	2	100	NaN	Turbo-fan
3320	N998DL	1992.0	Fixed wing multi engine	MCDONNELL DOUGLAS CORPORATION	MD-88	2	142	NaN	Turbo-jet
3321	N999DN	1992.0	Fixed wing multi engine	MCDONNELL DOUGLAS CORPORATION	MD-88	2	142	NaN	Turbo-jet
3322 ro	ws x 9 colu	mns							

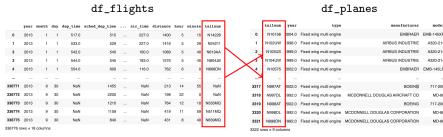
Joining multiple datasets is one way to fulfill the data collection "complexity" requirement for the final project!

2 Keys with Multiple Columns

3 Summary

4 Reminders

2 Keys with Multiple Columns


3 Summary

4 Reminders

Keys

Planes are uniquely identified by their tail number (tailnum).

tailnum is a foreign key of df_flights. It points to the primary key of another table.

tailnum is the primary key of df_planes. It uniquely identifies a plane.

A **primary key** is a column (or a set of columns) that uniquely identifies observations in a data frame.

A **foreign key** is a column (or a set of columns) that points to the primary key of another data frame.

Joining on a Key

The Pandas function .merge() can be used to join two DataFrames on a key.

```
df_joined = df_flights.merge(df_planes, on="tailnum")
df_joined
```

	year_x m	onth	day	dep_time	sched_dep_time	 model	engines	seats	speed	engine
0	2013	1	1	517.0	515	 737-824	2	149	NaN	Turbo-fan
1	2013	1	8	1435.0	1440	 737-824	2	149	NaN	Turbo-fan
2	2013	1	9	717.0	700	 737-824	2	149	NaN	Turbo-fan
3	2013	1	9	1143.0	1144	 737-824	2	149	NaN	Turbo-fan
4	2013	1	13	835.0	824	 737-824	2	149	NaN	Turbo-fan
284165	2013	9	20	1758.0	1805	 CL-600-2C10	2	80	NaN	Turbo-fan
284166	2013	9	22	1759.0	1805	 CL-600-2C10	2	80	NaN	Turbo-fan
284167	2013	9	23	1759.0	1805	 CL-600-2C10	2	80	NaN	Turbo-fan
284168	2013	9	24	1751.0	1805	 CL-600-2C10	2	80	NaN	Turbo-fan
284169	2013	9	28	712.0	720	 737-890	2	149	NaN	Turbo-fan
284170 ro	ws × 26 dolu	mns								

- Joining two data frames results in a *wider* data frame, with more columns.
- What's the deal with year_x?

Overlapping Column Names

df_flights											
Г	year	month	day	dep_time	sched_dep_time		air_time	distance	hour	ninute	tailnum
0	2013	- 1	1	517.0	515		227.0	1400	5	15	N14228
1	2013	- 1	1	533.0	529		227.0	1416	5	29	N24211
2	2013	- 1	1	542.0	540		160.0	1089	5	40	N619AA
3	2013	- 1	1	544.0	545		183.0	1576	5	45	N804JB
4	2013	- 1	1	554.0	600		116.0	762	6	0	N668DN
							-				
36771	2013	9	30	NaN	1455		NaN	213	14	55	NaN
36772	2013	9	30	NaN	2200		NaN	198	22	0	NaN
36773	2013	9	30	NaN	1210		NaN	764	12	10	N535MQ
6774	2013	9	30	NaN	1159		NaN	419	11	59	N511MQ
6775	2013	9	30	NaN	840		NaN	431	8	40	N839MQ

Both data frames contain a column named year, But we did not join on this as a key.

By default, Pandas adds the suffixes _x and _y to overlapping column names, but this can be customized.

737-824

149

NaN Turbo-fan

700 ...

717.0

2013

Analyzing the Joined Data

Now that we have joined the datasets, we can answer the question: which manufacturer's planes are most common?

```
df_joined["manufacturer"].value_counts()

BOEING 82912

EMBRAER 66068

AIRBUS 47302

AIRBUS INDUSTRIE 40891

BOMBARDIER INC 28272
```

Maybe it would be better to count *passengers* instead of flights. We don't have data on the number of passengers, but we can approximate it by the number of seats on each plane.

```
(df_joined.groupby("manufacturer")["seats"].sum().
    sort_values(ascending=False))
manufacturer
```

 BOEING
 14418976

 AIRBUS
 9624241

 AIRBUS INDUSTRIE
 7522805

 EMBRAER
 2803680

 BOMBARDIER INC
 2239015

2 Keys with Multiple Columns

3 Summary

4 Reminders

Joining to Weather Data

What weather factors cause flight delays?

We need to join the flights data to weather data. Here is a dataset containing hourly weather data at each airport.

```
df_weather = pd.read_csv(data_dir + "weather.csv")
df_weather
```

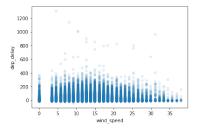
	airport	year	month	day	hour	 wind_speed	wind_gust	precip	pressure	visib
0	EWR	2013	1	1	1	 10.35702	NaN	0.0	1012.0	10.0
1	EWR	2013	1	1	2	 8.05546	NaN	0.0	1012.3	10.0
2	EWR	2013	1	- 1	3	 11.50780	NaN	0.0	1012.5	10.0
3	EWR	2013	1	1	4	 12.65858	NaN	0.0	1012.2	10.0
4	EWR	2013	1	1	5	 12.65858	NaN	0.0	1011.9	10.0
26110	LGA	2013	12	30	14	 13.80936	21.86482	0.0	1017.1	10.0
26111	LGA	2013	12	30	15	 17.26170	21.86482	0.0	1018.8	10.0
26112	LGA	2013	12	30	16	 14.96014	23.01560	0.0	1019.5	10.0
26113	LGA	2013	12	30	17	 17.26170	NaN	0.0	1019.9	10.0
26114	LGA	2013	12	30	18	 18.41248	NaN	0.0	1020.9	10.0
26115 rd	ws x 14 col	umns								

What is the primary key of this data set? (airport, year, month, day, hour)

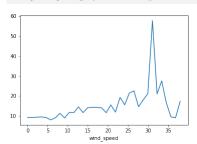
A Key with Multiple Columns

Let's start by looking at flights out of JFK. We need to join on year, month, day, and hour.

```
df_jfk = df_flights[df_flights["origin"] == "JFK"].merge(
    df_weather[df_weather["airport"] == "JFK"],
    on=("year", "month", "day", "hour"))
df_jfk
```


	year	month	day	dep_time	sched_dep_time	• • •	wind_speed	wind_gust	precip	pressure	visib
0	2013	1	1	542.0	540		14.96014	NaN	0.0	1012.1	10.0
1	2013	1	1	544.0	545		14.96014	NaN	0.0	1012.1	10.0
2	2013	1	1	559.0	559		14.96014	NaN	0.0	1012.1	10.0
3	2013	1	1	557.0	600		13.80936	NaN	0.0	1012.6	10.0
4	2013	1	1	558.0	600		13.80936	NaN	0.0	1012.6	10.0
110728	2013	9	30	2240.0	2245		9.20624	NaN	0.0	1016.5	10.0
110729	2013	9	30	2240.0	2250		9.20624	NaN	0.0	1016.5	10.0
110730	2013	9	30	2241.0	2246		9.20624	NaN	0.0	1016.5	10.0
110731	2013	9	30	2307.0	2255		9.20624	NaN	0.0	1016.5	10.0
110732	2013	9	30	2349.0	2359		9.20624	NaN	0.0	1016.3	10.0

110733 rows x 28 columns



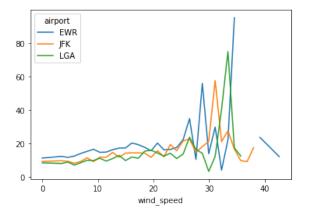
Let's see if the wind affects departure delays.

df_jfk.plot.scatter(x="wind_speed", y="dep_delay", alpha=0.1)

df_jfk.groupby("wind_speed")["dep_delay"].mean().plot.line()

Joining on Keys with Different Names

Sometimes, the keys you want to join have different names in the two datasets. This usually happens if the datasets come from different sources.


For example, if we want to join the (entire) flights data to the weather data, we need to include the airport in the key. But the airport is called "origin" in df_flights and "airport" in df_weather.

The .merge() function provides left_on= and right_on= arguments for specifying different keys in the **left** and **right** data frames.

```
df_flights_weather = df_flights.merge(
    df_weather,
    left_on=("origin", "year", "month", "day", "hour"),
    right_on=("airport", "year", "month", "day", "hour"))
```

Note that both "origin" and "airport" appear as columns in the joined data frame (even though they are the same).

```
(df_flights_weather
.groupby(["airport", "wind_speed"])["dep_delay"].mean()
.unstack("airport")
.plot.line())
```


2 Keys with Multiple Columns

3 Summary

4 Reminders

What We Have Learned Today

In Pandas, df1.merge(df2, ...) can be used to join two DataFrames, giving you access to variables from both datasets.

- Usually, we join the *foreign key* of one dataset to the *primary key* of another.
- If the keys have the same names, we use
 df1.merge(df2, on=...). Note that on= may be a single column
 name or a list of column names.
- If the keys have different names, we use df1.merge(df2, left_on=..., right_on=...).
- Overlapping columns that are not keys will have a suffix appended, which can be customized using df1.merge(df2, ..., suffixes=...).

What We Haven't Learned Today

- what happens when a key is missing from the left or right dataset
- what happens when you join using a column (or columns) that is not a primary key

We'll talk about these issues next time.

2 Keys with Multiple Columns

- 3 Summary
- 4 Reminders

Homework Reminders

- Don't forget to do the Colab ("Baby Names") for section tomorrow.
- Assignment 6 due Friday. **No extensions** because we need to post solutions (so that you can study for your exam).

Exam 2 Reminders

- Exam 2 is in class next Monday. Same policy as last time (1 page of handwritten notes allowed).
- The exam includes material up to Monday (hierarchical clustering). It does not include material from today or Friday.
- I have posted a practice exam. Solutions will be posted later in the week.
- We have also posted solutions to all the assignments and will post solutions to Assignments 5 and 6 before the exam.

Project Reminders

- Sign up for a final project presentation here: [link to form].
- The final project files are due on Canvas on Wednesday 3/22 at 11:59 PM.

