
Lecture 17
Evaluating Classification Models

Dennis Sun
Stanford University

DATASCI / STATS 112

February 22, 2023

1

1 Review

2 Precision and Recall

3 Announcements

2

1 Review

2 Precision and Recall

3 Announcements

3

Case Study: Credit Card Fraud
Dataset of credit card transactions in September 2013 by
European cardholders.

import pandas as pd
df_fraud = pd.read_csv(

"https://datahub.io/machine-learning/creditcard/r/creditcard.csv")
df_fraud

Goal: Predict Class, where 1 indicates a fraudulent transaction.
4

Training a Classifier

X_train = df_fraud.loc[:, "V1":"V28"]
y_train = df_fraud["Class"]

Last time, we saw how k-nearest neighbors could be used for
classification:

from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=20)
cross_val_score(model, X_train, y_train,

scoring="accuracy", cv=10).mean()

0.9992731942525058

How is the accuracy so high?

5

A Closer Look

Let’s take a closer look at the labels.

y_train.value_counts()

'0' 284315
'1' 492
Name: Class, dtype: int64

Almost all of the transactions are normal!

We could get 99.8% accuracy just by predicting that every
transaction is normal.

Although this model is accurate overall, it is inaccurate for
fraudulent transactions. A good model is “accurate for every
class”.

6

1 Review

2 Precision and Recall

3 Announcements

7

Precision and Recall

We need a score that measures “accuracy for class c”.

There are at least two reasonable definitions:
• precision: p(correct|predicted class c)
Among the observations that were predicted to be in class c,
what proportion actually were?
• recall: p(correct|actual class c).
Among the observations that were actually in class c, what
proportion were predicted to be?

8

A Geometric Look at Precision and Recall
not in class cin class c

predicted to be in class c
(a.k.a. “positives”)

TP FP

FN TN

precision =
TP

TP+ FP recall = TP
TP+ FN

9

Exercise: Calculating Precision and Recall
To check our understanding of these definitions, let’s calculate a
few precisions and recalls by hand.

First, summarize the results by the confusion matrix.
from sklearn.metrics import confusion_matrix
model.fit(X_train, y_train)
y_train_ = model.predict(X_train)
confusion_matrix(y_train, y_train_)

array([[284267, 48],
[116, 376]])

← actually in class 0

← actually in class 1
• What is the (training) accuracy? 99.99%

• What’s the precision for normal transactions? 99.96%

• What’s the recall for normal transactions? 99.98%

• What’s the precision for fraudulent transactions? 88.68%

• What’s the recall for fraudulent transactions? 76.42%

Note that each class has its own precision and recall!
10

Tradeoff between Precision and Recall
Can you imagine a classifier that always has 100% recall for class
c, no matter the data?
In general,
• precision increases if we classify fewer observations as c
• recall increases if we classify more observations as c

How do we compare two classifiers, if one has higher precision
and the other has higher recall?
The F1 score combines precision and recall into a single score:

F1 score = harmonic mean of precision and recall

= 1
/1

2

(1

precision +
1

recall
)

So the F1 score of the classifier for fraudulent transactions is

1
/1

2

(1

.8868
+

1

.7642

)
≈ 82.1%.

To achieve a high F1 score, both precision and recall have to be
high. If either one is low, then the harmonic mean will be low. 11

Precision, Recall, and F1 in Scikit-Learn

Remember that each class has its own precision, recall, and F1.

For cross_val_score, the scoring= parameter must be a single
number.
For this, we can use
• "precision_macro"

• "recall_macro"

• "f1_macro"

which averages the score over the classes.

12

Precision-Recall Curve
Another way to illustrate the tradeoff between precision and
recall is to graph the precision-recall curve.
First, we need the predicted probabilities.

y_train_probs_ = model.predict_proba(X_train)
y_train_probs_

array([[1., 0.],
[1., 0.],
[1., 0.],
...,
[1., 0.],
[1., 0.],
[1., 0.]])

So far, we have been implicitly using a threshold of 0.5 to classify
a transaction as fraud.
But what if we instead used a different threshold t? Depending
on what t we pick, we’ll get a different precision and recall. We
can graph the tradeoff.

13

Precision-Recall Curve
from sklearn.metrics import precision_recall_curve

precision, recall, thresholds = precision_recall_curve(
y_train, y_train_probs_[:, 1], pos_label="'1'")

precision
array([0.33606557, 0.73958333, 0.8125 , 0.83333333, 0.84143763,

0.84934498, 0.85393258, 0.86136364, 0.86896552, 0.87470998,
0.88679245, 0.9031477 , 0.91898734, 0.93582888, 0.95965418,
0.97169811, 0.98220641, 0.98418972, 0.99468085, 1. ,
1.])

pd.DataFrame({ "precision": precision, "recall": recall
}).plot.line(x="precision", y="recall")

14

1 Review

2 Precision and Recall

3 Announcements

15

Reminders

• Final project examples posted to website.
• Assignment 5 is due next Tuesday. There’s a new Kaggle
competition and a new prize for winning this one.
• Don’t forget to try the Colab for section tomorrow.
• Exam 2 is Monday 3/6. More details (including a practice
exam) will be released on Monday.
• Office hours right now!

16

	Review
	Precision and Recall
	Announcements

