Lecture 17
Evaluating Classification Models

Dennis Sun
Stanford University
DATASCI / STATS 112

February 22, 2023

@ Review

@ Precision and Recall

® Announcements

@ Review

Case Study: Credit Card Fraud

Dataset of credit card transactions in September 2013 by
European cardholders.

import pandas as pd

df _fraud = pd.read_csv(
"https://datahub.io/machine-learning/creditcard/r/creditcard.csv")

df _fraud

Time vi v2 v3 ... v27 V28 Amount Class

0 00 -1.359807 -0.072781 2536347 .. 0.133558 -0.021053 149.62 0

1 00 1191857 0266151 0.166480 .. -0.008983 0.014724 269 0

2 10 -1.358354 -1.340163 1773209 .. -0.055353 -0.059752 378.66 0

3 10 -0.966272 -0.185226 1792993 .. 0.062723 0.061458 123.50 0

3 20 -1.158233 0877737 1548718 .. 0219422 0215153 69.99 0
284802 172786.0 -11.881118 10.071785 -9.834783 0.943651 0.823731 0.77 0"
284803 172787.0 -0.732789 -0.055080 2.035030 .. 0.068472 -0.053527 24.79 0
284804 172788.0 1.919565 -0.301254 -3.249640 .. 0.004455 -0.026561 67.88 0"
284805 172788.0 -0.240440 0530483 0702510 .. 0.108821 0.104533 10.00 0
284806 1727920 -0.533413 -0.189733 0703337 .. -0.002415 0.013649 217.00 0

284807 rows x 31 columns

Goal: Predict c1ass, where 1 indicates a fraudulent transaction.

Training a Classifier

X_train = df_fraud.loc[:, "Vi":"V28"]
y_train = df_fraud["Class"]

Last time, we saw how k-nearest neighbors could be used for
classification:

from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=20)

cross_val_score(model, X_train, y_train,
scoring="accuracy", cv=10).mean()

0.9992731942525058

How is the accuracy so high?

(€3]

A Closer Look

Let’s take a closer look at the labels.

y_train.value_counts()
‘o’ 284315
1! 492
Name: Class, dtype: int64

Almost all of the transactions are normal!

We could get 99.8% accuracy just by predicting that every
transaction is normal.

Although this model is accurate overall, it is inaccurate for
fraudulent transactions. A good model is “accurate for every
class”.

@ Precision and Recall

Precision and Recall

We need a score that measures “accuracy for class ¢”.

There are at least two reasonable definitions:
e precision: p(correct|predicted class c)
Among the observations that were predicted to be in class ¢,
what proportion actually were?
e recall: p(correct|actual class c).
Among the observations that were actually in class ¢, what
proportion were predicted to be?

A Geometric Look at Precision and Recall
in class ¢ not in class ¢

predicted to be in class ¢
(ak.a. “positives”)

TP TP

precision = TP FP recall = TP EN

Exercise: Calculating Precision and Recall

To check our understanding of these definitions, let's calculate a
few precisions and recalls by hand.

First, summarize the results by the confusion matrix.
from sklearn.metrics import confusion_matrix
model.fit(X_train, y_train)
y_train_ = model.predict(X_train)
confusion_matrix(y_train, y_train_)
array ([[284267, 48], <+ actually in class O

[116, 37611) <+ actually in class |
What is the (training) accuracy? 99.99%
What's the precision for normal transactions? 99.96%
What's the recall for normal transactions? 99.98%
What's the precision for fraudulent transactions? 88L8%
e \What'’s the recall for fraudulent transactions? T6+42%

Note that each class has its own precision and recall!

Tradeoff between Precision and Recall

Can you imagine a classifier that always has 100% recall for class
¢, no matter the data?
In general,

® precision increases if we classify fewer observations as ¢

e recall increases if we classify more observations as ¢
How do we compare two classifiers, if one has higher precision
and the other has higher recall?
The F1 score combines precision and recall into a single score:

F1 score = harmonic mean of precision and recall
1 1 1
= 1 —_
/Q(precision + recall)
So the F1 score of the classifier for fraudulent transactions is
1 1 1
1/= ~ 821%.
/5 gege * pwr) ~ 8-
To achieve a high F1 score, both precision and recall have to be
high. If either one is low, then the harmonic mean will be low.

Precision, Recall, and F1 in Scikit-Learn

Remember that each class has its own precision, recall, and F1.

For cross_val_score, the scoring= parameter must be a single
number.
For this, we can use

® ‘'precision_macro"
® ‘'"recall_macro"

® "fi1 macro"

which averages the score over the classes.

Precision-Recall Curve

Another way to illustrate the tradeoff between precision and
recall is to graph the precision-recall curve.

First, we need the predicted probabilities.

y_train_probs_ = model.predict_proba(X_train)
y_train_probs_

array([[1., 0.],
[1., 0.1,
[1., 0.1,
[1 0.1,
[1., 0.1,
(1., 0.1D

So far, we have been implicitly using a threshold of 0.5 to classify
a transaction as fraud.

But what if we instead used a different threshold ¢? Depending
on what t we pick, we'll get a different precision and recall. We
can graph the tradeoff.

Precision-Recall Curve

from sklearn.metrics import precision_recall_curve

precision, recall, thresholds = precision_recall_curve(
y_train, y_train_probs_[:, 1], pos_label="'1'")
precision
array([0.33606557, 0.73958333, 0.8125 , 0.83333333, 0.84143763,

0.84934498, 0.85393258, 0.86136364, 0.86896552, 0.87470998,
0.88679245, 0.9031477 , 0.91898734, 0.93582888, 0.95965418,
0.97169811, 0.98220641, 0.98418972, 0.99468085, 1. s
1. D

pd.DataFrame({ "precision": precision, "recall": recall
}) .plot.line(x="precision", y="recall")

10 — rcall

04 05 06 07 08 09 10
precision

® Announcements

A8

Reminders

Final project examples posted to website.

Assignment 5 is due next Tuesday. There's a new Kaggle
competition and a new prize for winning this one.

Don't forget to try the Colab for section tomorrow.

Exam 2 is Monday 3/6. More details (including a practice
exam) will be released on Monday.

Office hours right now!

	Review
	Precision and Recall
	Announcements

