Lecture 14
Evaluating Regression Models

Dennis Sun
Stanford University
DATASCI / STATS 112

February 13, 2023



@ Review

@ Measuring Error

@ Estimating Test Error

@ Conclusion



@ Review



K -Nearest Neighbors

The data for which we know the label y is called the training data.

The data for which we don’t know y (and want to predict it) is
called the test data.

We've seen one machine learning model: k-nearest neighbors.

pipeline = make_pipeline(
StandardScaler(),
KNeighborsRegressor (n_neighbors=5, metric="euclidean"))

pipeline.fit(X=X_train, y=y_train)
pipeline.predict (X=pd.DataFrame([x_test]))

array([13.2])

Today: How do we know if this model is any good?



@ Measuring Error



Prediction Error

Suppose the true label is ; and our model predicts ¢;. How do
we measure how well our model did?

* mean squared error (MSE)
MSE = mean of (y; — ;)%
° mean absolute error (MAE)

MAE = mean of |y; — 9.

Calculating MSE or MAE requires data where the true labels are
known. Where do we get such data?



Training Error

On the training data, we have the true labels ;.

Let’s calculate the training error of our model.

pipeline.fit(X_train, y_train)
y_train_ = pipeline.predict(X_train)
((y_train - y_train_) #** 2).mean()

207.24148148148146

Note that you can use Scikit-Learn to calculate the MSE!

from sklearn.metrics import mean_squared_error
mean_squared_error(y_train, y_train_)

207.24148148148146

How do we interpret this MSE of 207.247
Rememper, we are predicting the price of wine. So
the model is off By 207.24 sQuare dollars on averace.

The square root is easier to interpret. The model is off by
v/207.24 =~ $14.40 on average. This is called the RMSE.



The Problem with Training Data

What is the training error of a 1-nearest neighbor model?

pipeline = make_pipeline(
StandardScaler(),
KNeighborsRegressor (n_neighbors=1, metric="euclidean"))
pipeline.fit(X_train, y_train)
y_train_ = pipeline.predict(X_train)
mean_squared_error (y_train, y_train_)

0.0
Why did this happen?

The I-nearest neighBor to any orservation in the
training data is itself! So the predictions are perfect!

A 1-nearest neighbor model will always have O training error. Is it
necessarily the best model?



Test Error

We don't need to know how well our model does on training data.

We want to know how well it predicts on test data.

In general, test error > training error.

Analogy: A professor posts a practice exam before an exam.

e |f the actual exam is the same as the practice exam, how
many points will students miss? That's training error.

e [f the actual exam is different from the practice exam, how
many points will students miss? That'’s test error.

Problem: we can’t measure test error because we don’t have the
true labels on the test data.

Now: How do we estimate the test error?



@ Estimating Test Error

10



Validation Set

The training data is the only data where we have the true labels .

So one way to estimate the test error is to use only some of the
training data to fit the model, leaving the rest to estimate the test

error.

TRAINING SET

training data

VALIDATION SET




Implementing the Validation Set

We randomly sample 50% of the data to be in the training set,
leaving the rest for the validation set.

train = bordeaux_train.sample(frac=.5)
val = bordeaux_train.drop(train.index)

train val

price summer har sep win age price summer har sep win age
yoar yoar
1965 1.0 154 267 148 602 27 1952 37.0 171 160 143 600 40
1966 47.0 165 86 184 819 26 1953 63.0 167 80 173 690 39
1967 19.0 162 118 165 714 25 1955 45.0 171 130 168 502 37
1959 66.0 175 187 187 485 33 1961 100.0 173 38 204 830 31
1960 14.0 164 290 158 763 32 1962 33.0 16.3 52 172 697 30
1977 1.0 156 87 168 821 15 1971 270 168 112 169 551 21
1964 31.0 173 96 18.8 402 28 1974 1.0 163 184 162 574 18
1968 1.0 162 292 164 610 24 1975 30.0 169 171 172 572 17
1957 220 161 110 162 420 35 1979 210 162 122 173 717 13
1973 16.0 171 123 179 376 19 1980 14.0 160 74 184 578 12

14 rows x 6 columns 13 rows x 6 columns

X_train, y_train = train[["win", "summer"]], train["price"]
X_val, y_val = val[["win", "summer"]], val["price"]



Implementing Validation Error

Now we fit the model to the training set and predict on the
validation set.
pipeline = make_pipeline(

StandardScaler (),

KNeighborsRegressor (n_neighbors=1, metric="euclidean"))
pipeline.fit(X_train, y_train)
y_val_ = pipeline.predict(X_val)
mean_squared_error(y_val, y_val_)

579.3076923076923

Note that, unlike the training error, the validation error is not 0. It
is a better estimate of the test error.



Cross-Validation

The way we split the data into two halves was arbitrary.

Why not use the 2nd half for training and the 1st half for
validation?

TRAINING SET VALIDATION SET

training data

VALIDATION SET TRAINING SET
Cross-

validation

ejep 3uluiey



Implementing Cross-Validation from Scratch
Previously, we fit the model to the training set and evaluated
predictions on the validation set.

pipeline.fit(X_train, y_train)
y_val_ = pipeline.predict(X_val)
mean_squared_error(y_val, y_val_)

579.3076923076923

Now let's do the same thing, with the roles reversed.

pipeline.fit(X_val, y_val)
y_train_ = pipeline.predict(X_train)
mean_squared_error(y_train, y_train_)

213.21428571428572

Notice that the estimates can be quite different!

To come up with one overall estimate, we can average the errors:
(579.3076923076923 + 213.21428571428572) / 2

396.26098901098896



K-Fold Cross Validation

One problem with splitting the data into two is that we only use
1/2 of the data for training.

A model trained on 1/2 of the data may behave differently from a
model trained on all of the data.

It may be better to split the data into K samples and come up
with K validation errors.

N O o M
O & &® &

TRAIN TRAIN TRAIN |sample 1
TRAIN TRAIN TRAIN | sample 2
TRAIN TRAIN TRAIN | sample 3
TRAIN TRAIN TRAIN sample 4

This way, we use 1 — 1/K of the data for training.

training data




Implementing Cross-Validation in Scikit-Learn

You specify the model, data, and K. Scikit-Learn will:
e split the training data into K samples
e fit the model to each training set (K times)
e predict on each validation set (K times)
e calculate the prediction error (K times)

from sklearn.model_selection import cross_val_score

scores = cross_val_score(
pipeline,
X=bordeaux_train[["win", "summer"]],
y=bordeaux_train["price"], # this is all of the training data!
scoring="neg_mean_squared_error", # higher is better for a score
cv=4)

scores

array ([-547. , -405.85714286, -67. -31. D

So an overall estimate of test MSE is:
-scores.mean()
262.7142857142857



@ Conclusion

18



Summary

How do we evaluate machine learning models?

e Prediction error (MSE / MAE), but it requires knowing the
true label .

® \We could calculate training error...
e __butitisa bad estimate of test error.

e Cross-validation, which involves splitting up your training
data, produces a better estimate of the test error.



Reminders

e Assignment 4 is due next Monday. (I gave you a few extra
days for this one.)

® You should know most of what you need to finish
Assignment 4 by tomorrow.

e You should be starting to gather data for your final project
this week.

20



	Review
	Measuring Error
	Estimating Test Error
	Conclusion

