Lecture 4 Split-Apply-Combine Paradigm

Dennis Sun Stanford University DATASCI / STATS 112

January 18, 2023


[2] # Read in the Titanic data set using the Pandas `read_csv` function. df_titanic = pd.read_csv("https://dlsun.github.io/stats112/data/titanic.csv")

To look at the data, we make `df_titanic` the last line of the cell so that # the output is printed. df_titanic

	name	pclass	survived	sex	age	sibsp	parch	ticket	fare	cabin	embarked	boat	body	home.dest
0	Allen, Miss. Elisabeth Walton	1	1	female	29.0000	0	0	24160	211.3375	B5	S	2	NaN	St Louis, MO
1	Allison, Master. Hudson Trevor	1	1	male	0.9167	1	2	113781	151.5500	C22 C26	s	11	NaN	Montreal, PQ / Chesterville, ON
2	Allison, Miss. Helen Loraine	1	0	female	2.0000	1	2	113781	151.5500	C22 C26	s	NaN	NaN	Montreal, PQ / Chesterville, ON
3	Allison, Mr. Hudson Joshua Creighton	1	0	male	30.0000	1	2	113781	151.5500	C22 C26	s	NaN	135.0	Montreal, PQ / Chesterville, ON
4	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	1	0	female	25.0000	1	2	113781	151.5500	C22 C26	s	NaN	NaN	Montreal, PQ / Chesterville, ON
1304	Zabour, Miss. Hileni	3	0	female	14.5000	1	0	2665	14.4542	NaN	С	NaN	328.0	NaN
1305	Zabour, Miss. Thamine	3	0	female	NaN	1	0	2665	14.4542	NaN	С	NaN	NaN	NaN
1306	Zakarian, Mr. Mapriededer	3	0	male	26.5000	0	0	2656	7.2250	NaN	С	NaN	304.0	NaN
1307	Zakarian, Mr. Ortin	3	0	male	27.0000	0	0	2670	7.2250	NaN	с	NaN	NaN	NaN
1308	Zimmerman, Mr. Leo	3	0	male	29.0000	0	0	315082	7.8750	NaN	S	NaN	NaN	NaN

1309 rows × 14 columns

What do you think the following code will produce?

df_ti	ltanic["p	class"]	== 3					
0	False							
1	False				i	a Series (of Boolea	ins
2	False							
3	False				;	indiantar	الم ال	1
4	False					indicates	When	her
					(each passe	enger wa	s in
1304	True				-	3rd class	or not	
1305	True							
1306	True							
1307	True				ė	another	example	of
1308	True					vectoriza	tion!	
Name:	pclass,	Length:	1309,	dtype:	bool			

What about the following?

(df_titanic["pclass"] == 3).sum() 709 the number of passengers in 3rd class

Boolean Series

How would you interpret the following?

```
(df_titanic["pclass"] == 3).mean()
0.5416348357524828
in 3rd class
```

What You Need to Know about Booleans

- Applying a relational operator like ==, <, >, and != on a Series produces a Series of booleans, by vectorization.
- Arithmetic operations can be performed on booleans in **Series**, treating **True** as 1 and **False** as 0.

Boolean Masks

We can pass a boolean **Series** as a mask to a **DataFrame** to filter the data.

df_titanic[df_titanic["pclass"] == 3]

			name	pclass	survived	sex	age	sibsp	parch	ticket	fare	cabin	embarked	boat	body	home.dest
index		600	Abbing, Mr. Anthony	3	0	male	42.0	0	0	C.A. 5547	7.5500	NaN	s	NaN	NaN	NaN
<u>2</u>	٦	601	Abbott, Master. Eugene Joseph	3	0	male	13.0	0	2	C.A. 2673	20.2500	NaN	s	NaN	NaN	East Providence, RI
ð	4	602	Abbott, Mr. Rossmore Edward	3	0	male	16.0	1	1	C.A. 2673	20.2500	NaN	s	NaN	190.0	East Providence, RI
64	\searrow	603	Abbott, Mrs. Stanton (Rosa Hunt)	3	1	female	35.0	1	1	C.A. 2673	20.2500	NaN	s	A	NaN	East Providence, RI
Note		604	Abelseth, Miss. Karen Marie	3	1	female	16.0	0	0	348125	7.6500	NaN	s	16	NaN	Norway Los Angeles, CA
Z																
		1304	Zabour, Miss. Hileni	3	0	female	14.5	1	0	2665	14.4542	NaN	С	NaN	328.0	NaN
		1305	Zabour, Miss. Thamine	3	0	female	NaN	1	0	2665	14.4542	NaN	с	NaN	NaN	NaN
		1306	Zakarian, Mr. Mapriededer	3	0	male	26.5	0	0	2656	7.2250	NaN	с	NaN	304.0	NaN
		1307	Zakarian, Mr. Ortin	3	0	male	27.0	0	0	2670	7.2250	NaN	С	NaN	NaN	NaN
		1308	Zimmerman, Mr. Leo	3	0	male	29.0	0	0	315082	7.8750	NaN	s	NaN	NaN	NaN

How would we calculate the average fare paid by a passenger in 3rd class?

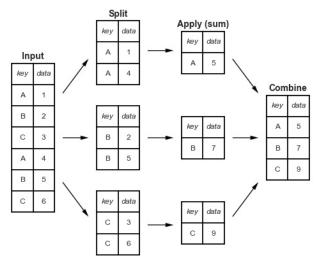
df_titanic[df_titanic["pclass"] == 3]["fare"].mean()

13.302888700564973

Another Exercise

How would we calculate the average fare paid by a passenger in *each* class?

```
for i in range(1, 4):
    print(df_titanic[df_titanic["pclass"] == i]["fare"].mean())
```


87.50899164086688 21.179196389891697 13.302888700564973

Problems with this Solution

- This is inconvenient (have to write a for loop over the possible values).
- The values are not stored in a Pandas object for further analysis.

The problem fits into the **split-apply-combine paradigm** (Wickham, 2011).

Split-Apply-Combine in Pandas

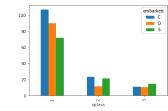
The split-apply-combine paradigm is implemented in Pandas using the .groupby() method.

```
df_titanic.groupby("pclass")["fare"].mean()

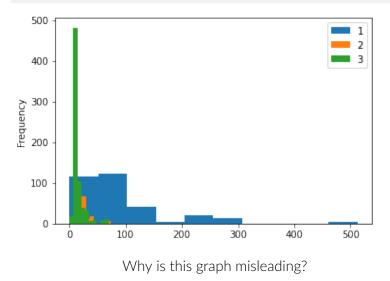
pclass

1 87.508992 The values are in a Series

2 21.179196 For easy analysis!


Name: fare, dtype: float64
```

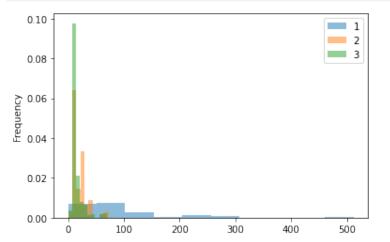

Splitting on Multiple Variables


You can call .groupby() on multiple variables.

<pre>df_titanic.groupby(["pclass", "embarked"])["fare"].mean()</pre>										
pclass	embarked									
1	С	106.845330		.unsta	ck(" <mark>emb</mark> a	arked")				
	Q	90.000000								
	S	72.148094		embarked	с	Q	S			
2	С	23.300593		pclass						
	Q	11.735114	\longrightarrow	1	106.845330	90.000000	72.148094			
	S	21.206921		2	23.300593	11.735114	21.206921			
3	С	11.021624		3	11.021624	10.390820	14.435422			
	Q	10.390820								
	S	14.435422		.plot.	har()					
Name: f	are. dtvpe:	float64		. 100.	Sur ()					

This Trick Works on Lots of Methods!

df_titanic.groupby("pclass")["fare"].plot.hist(legend=True)



Comparing Distributions

Density histograms are better for comparisons.

In-Class Exercise

Click on the logo below to be taken to the Colab.

- Work on the Colab for tomorrow's section!
- Assignment 1 due Friday. Uploaded to Gradescope by 9 AM.
- Exam 1 is next Friday. More details on Friday.

