
Lecture 4
Split-Apply-Combine Paradigm

Dennis Sun
Stanford University

DATASCI / STATS 112

January 18, 2023

1



2



1 Booleans in Pandas

2 The Split-Apply-Combine Paradigm

3 In-Class Exercise

4 Reminders

3



What do you think the following code will produce?

df_titanic["pclass"] == 3

0 False
1 False
2 False
3 False
4 False

...
1304 True
1305 True
1306 True
1307 True
1308 True
Name: pclass, Length: 1309, dtype: bool

a Series of booleans

indicates whether

each passenger was in

3rd class or not

another example of

vectorization!

What about the following?

(df_titanic["pclass"] == 3).sum()

709
the number of passengers

in 3rd class

4



Boolean Series

How would you interpret the following?

(df_titanic["pclass"] == 3).mean()

0.5416348357524828
the proportion of passengers

in 3rd class

What You Need to Know about Booleans
• Applying a relational operator like ==, <, >, and != on a Series

produces a Series of booleans, by vectorization.
• Arithmetic operations can be performed on booleans in

Series, treating True as 1 and False as 0.

5



Boolean Masks
We can pass a boolean Series as a mask to a DataFrame to filter
the data.

df_titanic[df_titanic["pclass"] == 3]

N
o
t
e

t
h
e

in
d
e
x
!

6



Exercise

How would we calculate the average fare paid by a passenger in
3rd class?

df_titanic[df_titanic["pclass"] == 3]["fare"].mean()

13.302888700564973

7



1 Booleans in Pandas

2 The Split-Apply-Combine Paradigm

3 In-Class Exercise

4 Reminders

8



Another Exercise

How would we calculate the average fare paid by a passenger in
each class?

for i in range(1, 4):
print(df_titanic[df_titanic["pclass"] == i]["fare"].mean())

87.50899164086688
21.179196389891697
13.302888700564973

Problems with this Solution
• This is inconvenient (have to write a for loop over the
possible values).
• The values are not stored in a Pandas object for further
analysis.

9



The Split-Apply-Combine Paradigm
The problem fits into the split-apply-combine paradigm
(Wickham, 2011).

10

https://www.jstatsoft.org/article/view/v040i01


Split-Apply-Combine in Pandas

The split-apply-combine paradigm is implemented in Pandas
using the .groupby() method.

df_titanic.groupby("pclass")["fare"].mean()

pclass
1 87.508992
2 21.179196
3 13.302889
Name: fare, dtype: float64

The values are in a Series

for easy analysis!

11



Splitting on Multiple Variables
You can call .groupby() on multiple variables.

df_titanic.groupby(["pclass", "embarked"])["fare"].mean()

pclass embarked
1 C 106.845330

Q 90.000000
S 72.148094

2 C 23.300593
Q 11.735114
S 21.206921

3 C 11.021624
Q 10.390820
S 14.435422

Name: fare, dtype: float64

−→

.unstack("embarked")

.plot.bar()

12



This Trick Works on Lots of Methods!
df_titanic.groupby("pclass")["fare"].plot.hist(legend=True)

Why is this graph misleading?
13



Comparing Distributions
Density histograms are better for comparisons.

df_titanic.groupby("pclass")["fare"].plot.hist(legend=True,
alpha=0.5,
density=True)

14



1 Booleans in Pandas

2 The Split-Apply-Combine Paradigm

3 In-Class Exercise

4 Reminders

15



In-Class Exercise

Click on the logo below to be taken to the Colab.

16

https://colab.research.google.com/drive/1AMkJ9Iz6d023NI4BcHCvV8PFXl7OUhLz?usp=sharing


1 Booleans in Pandas

2 The Split-Apply-Combine Paradigm

3 In-Class Exercise

4 Reminders

17



In-Class Exercise

• Work on the Colab for tomorrow’s section!
• Assignment 1 due Friday. Uploaded to Gradescope by 9 AM.
• Exam 1 is next Friday. More details on Friday.

18


	Booleans in Pandas
	The Split-Apply-Combine Paradigm
	In-Class Exercise
	Reminders

