Lecture 11
Textual Data: Bag-of-Words and N-Grams

Dennis Sun
Stanford University
DATASCI / STATS 112

February 6, 2023

@ Textual Data

@ Bag-of-Words Model

® N-Grams

@ Reminders

@ Textual Data

Review

We've seen that data can take different forms.
We've seen how they can be transformed into tabular data.

[
{
"name":"Girls",
"runtime":30,
"network" :{
"name": "NBC" ,

.

"seasons": [

"premiereDate":"2012-04-15",
"episodes":[...],

},
o
1, -
"cast": [—
{ 2 s
"person":{
"name":"Lena Dunham" P
: s
},
"character":{
"name":"Hannah Horvath"
},
"voice":false
},

R
.

i
E———

i tmaze comshowsis71he- o T
powerpat.

type language

Serptod Englsh

Englen

Textual Data

A textual data consists of several texts. Each text is called a
document. The collection of texts is called a corpus.

Example Corpus:

"I am Sam\n\nI am Sam\nSam I..."
"The sun did not shine.\nIt was..."
"Fox\nSocks\nBox\nKnox\n\nKnox. . ."
"Every Who\nDown in Whoville\n..."
"UP PUP Pup is up.\nCUP PUP..."

"On the fifteenth of May, in the..."

"Congratulations!\nToday is your..."

"One fish, two fish, red fish..."

Reading in Textual Data

Documents are sometimes stored in different files.

seuss_dir = "http://dlsun.github.io/pods/data/drseuss/"
seuss_files = [
"green_eggs_and_ham.txt", "cat_in_the_hat.txt",
"fox_in_socks.txt", "how_the_grinch_stole_christmas.txt",
"hop_on_pop.txt", "horton_hears_a_who.txt",
"oh_the_places_youll_go.txt", "one_fish_two_fish.txt"]

We have to read them in one by one.
import requests

docs = {}

for filename in seuss_files:

response = requests.get(seuss_dir + filename, "r")
docs[filename] = response.text

Textual Data

A textual data consists of several texts. Each text is called a
document. The collection of texts is called a corpus.

Example Corpus:

~N
N

"I am Sam\n\nI am Sam\nSam I..."

"The sun did not shine.\nIt was..."
"Fox\nSocks\nBox\nKnox\n\nKnox. . ."

"Every Who\nDown in Whoville\n..." —
"UP PUP Pup is up.\nCUP PUP..."

"On the fifteenth of May, in the..."
"Congratulations!\nToday is your..."

"One fish, two fish, red fish..."

NO O ONO RO

~NOo-u b wnN - O
OO NO O Wo -

Goal: Turn this corpus into a matrix of numbers.

But what does each column represent?!

OO Ul == OON

@ Bag-of-Words Model

Bag-of-Words Model

In the bag-of-words model, each column represents a word.

First, we need to get the word counts.

from collections import Counter
Counter (docs["hop_on_pop.txt"].split())

Counter({'UP': 1, 'PUP': 3, 'Pup': 4, 'is': 10, 'up.': 2, ...})

Next, we put these counts in series and combine into a DataFrame.

import pandas as pd

pd.DataFrame (
[pd.Series(Counter(doc.split())) for doc in docs.values()],
index=docs.keys())

san-
Toam sam mee 2L o nor like that ..

To et rid of the NaNs,

cat_in_the_hat.txt 480 NaN NaN 40 NaN NaN 130 270 130 160 dd .
" 00 N N N Nt N 60 10 10 10 add .fillna(0).

horton_hears_a_who.txt 180 10 NaN 70 NaN NaN NaN 30 NaN 240 ThiS iS Ca“ed the term‘

how_the_grinch_stole_christmastxt 60 NaN NaN 20 NaN NaN 20 10 20 110
oh_the_places_youll_go.txt 20 NaN NaN NaN NaN NaN 20 60 10 110

et ot 50 50 Tt et s o 50 20 10 frequency matrix.

8 rows x 2562 columns

Bag-of-Words in Scikit-Learn

We can also use CountVectorizer in scikit-learn to produce a
term-frequency matrix.
from sklearn.feature_extraction.text import CountVectorizer
vec = CountVectorizer()

vec.fit(docs.values())
vec.transform(docs.values())

<8x1344 sparse matrix of type '<class 'numpy.int64'>'
with 2308 stored elements in Compressed Sparse Row format>

Wait! Why are there only 34+ words?

The set of words across a corpus is called the vocabulary. We can view
the vocabulary in a fitted CountVectorizer as follows:

vec.vocabulary_
{'am': 23, 'sam': 935, 'that': 1138, 'do': 287, 'mot': 767, ...}

The numeer here represents the column index in the matrix!
(So column 2.3 convtains the counvts for "am’, ete)

Technical Details about Bag-of-Words

What is not ideal about the way we counted words originally?
Counter({'UP': 1, 'PUP': 3, 'Pup': 4, 'is': 10, 'up.': 2, ...})

It's usually good to normalize for punctuation and capitalization.

Normalization options are specified when you initialize the
CountVectorizer. By default, Scikit-Learn strips punctuation and
converts all characters to lowercase.

But if you don’t want Scikit-Learn to normalize for punctuation
and capitalization, you can do the following:

vec = CountVectorizer(lowercase=False, token_pattern=r"[\S]+")
vec.fit(docs.values())
vec.transform(docs.values())

<8x2b562 sparse matrix of type '<class 'numpy.int64'>'
with 3679 stored elements in Compressed Sparse Row format>

Now we’re rack to 2562 words in the vocasulary!

® N-Grams

12

Motivating N-Grams

Bag-of-words has a simplicity that is hard to beat. It is easy to
understand and easy to implement.

What are its disadvantages?

Consider the following documents:
® ‘The dog bit her owner”
@® ‘Her dog bit the owner.”

Both documents have the exact same bag-of-words
representation:

| the her dog owner bit
11 1 1 1 1 1
21 1 1 1 1 1

But they mean something quite different!

N-grams

An n-gram is a sequence of n words.

Google Books Ngram Viewer

N-grams allow us to capture word order.
For example, bigrams (2-grams) allow us to distinguish the two
documents from before:

@® ‘The dog bit her owner”

@® ‘Her dog bit the owner”

| the, dog her, dog dog, bit bit, the bit, her the, owner her, owne
1 1 0 1 0 1 0 1
2 0 1 1 1 0 1 0

https://books.google.com/ngrams/

N-grams in Scikit-Learn

Scikit-Learn can create n-grams.

Just pass in ngram_range= tO the countVectorizer. To get bigrams,
we set the range to (2, 2):

vec = CountVectorizer(ngram_range=(2, 2))
vec.fit(docs.values())

vec.transform(docs.values())

<8x5846 sparse matrix of type '<class 'numpy.int64'>'
with 6459 stored elements in Compressed Sparse Row format>

We can also get individual words (unigrams) alongside the
bigrams:

vec = CountVectorizer (ngram_range=(1, 2))
vec.fit(docs.values())

vec.transform(docs.values())

<8x7190 sparse matrix of type '<class 'numpy.int64'>'
with 8767 stored elements in Compressed Sparse Row format>

@ Reminders

16

Reminders

e Do the Colab on the Federalist Papers.

e You are now fully equipped to finish Assignment 3! It is due
Friday.

e Start thinking about the final project.

	Textual Data
	Bag-of-Words Model
	N-Grams
	Reminders

