
Lecture 21
Types of Joins

Dennis Sun
Stanford University

DATASCI / STATS 112

March 3, 2023

1



1 Review

2 Types of Joins

3 Many-to-Many Joins

4 Summary

5 Reminders

2



Joins

Sometimes data is spread across multiple datasets.

For example, suppose we have baby names in 1920 and 2020:
import pandas as pd
data_dir = "http://dlsun.github.io/pods/data/names/"

df_1920 = pd.read_csv(data_dir + "yob1920.txt", header=None,
names=["Name", "Sex", "Count"])

df_2020 = pd.read_csv(data_dir + "yob2020.txt", header=None,
names=["Name", "Sex", "Count"])

3



Joins
df_1920 df_2020

We can join two datasets on a key.
We focused on the case where we join on a primary key.
In this case, we are joining the primary keys of two tables
together. (We could also join the primary key to a foreign key.)

4



Joins
df_joined = df_1920.merge(df_2020, on=["Name", "Sex"])
df_joined

5



Missing Keys?
df_joined[df_joined["Name"] == "Maya"]

Why isn’t Maya in the joined data? How does Pandas determine
which keys show up?

It is there in the 2020 data...
df_2020[df_2020["Name"] == "Maya"]

...but not in the 1920 data.
df_1920[df_1920["Name"] == "Maya"]

In order to appear in the joined data, a key must be present in
both tables.

6



1 Review

2 Types of Joins

3 Many-to-Many Joins

4 Summary

5 Reminders

7



Types of Joins

How can we customize the behavior of joins for missing keys?

This brings us to the first of today’s topics: types of joins.
• By default, Pandas does an inner join, which only keeps keys
that are present in both tables.

• An outer join keeps any key that is present in either table.
• A left join keeps all keys in the left table, even if they are not
in the right table. But any keys that are only in the right table
are dropped.

• A right join keeps all keys in the right table, even if they are
not in the left table. But any keys that are only in the left
table are dropped.

8



Code Example
We can customize the type of join using the how= parameter of
.merge(). By default, how="inner".
df_joined_outer = df_1920.merge(df_2020, on=["Name", "Sex"],

how="outer")
df_joined_outer[df_joined_outer["Name"] == "Maya"]

Note the missing values for other columns, like Count, for 1920!

What other type of join would have produced this output?
df_joined_right = df_1920.merge(df_2020, on=["Name", "Sex"],

how="right")
df_joined_right[df_joined_right["Name"] == "Maya"]

9



Summary of Types of Joins

INNER JOIN

left right

(FULL) OUTER JOIN

left right

LEFT JOIN

left right

RIGHT JOIN

left right

10



Exercises
Which type of join would be best suited for each case?

1 We want to determine the names that have increased in
popularity the most between 1920 and 2020.

df_1920.merge(df_2020, on=["Name", "Sex"], how=...)

how="right" (to include names that didn’t appear at all

in the 1920 data)

2 We want to graph the popularity of names over time.

df = pd.read_csv(data_dir + "yob1981.txt",
header=None,
names=["Name", "Sex", 1981])

for year in range(1982, 2021):
df_year = pd.read_csv(data_dir + f"yob{year}.txt",

header=None,
names=["Name", "Sex", year])

df = df.merge(df_year, on=["Name", "Sex"], how=...)

how="outer" (to include rare names that go in and

out of the data) 11



1 Review

2 Types of Joins

3 Many-to-Many Joins

4 Summary

5 Reminders

12



Many-to-Many Relationships

So far, the keys we’ve joined on have been the primary key of (at
least) one table.

• If we join to the primary key of another table, then the
relationship is one-to-one (since primary keys uniquely
identify rows).

• If we join to the foreign key of another table, then the
relationship is one-to-many.

What if we join on a key that is not a primary key?
That is, what if the key does not uniquely identify rows in either
table so that each value of the key might appear multiple times?

This type of join is called many-to-many.

13



Example
What if we only joined on the name?

df_1920.merge(df_2020, on="Name")

Why does Mary appear

4 times in this data?

14



A Diagram

df_1920

Name Sex Count
0 Mary F 70975
...

...
...

...
6195 Mary M 195

...
...

...
...

...
...

...
...

df_2020

Name Sex Count
...

...
...

...
122 Mary F 2210

...
...

...
...

30759 Mary M 5
...

...
...

...

There are 4 matches, only 2 of which are desirable.

15



Preventing Bugs

Most of the time, many-to-many joins are a bug, caused by a
misunderstanding about the primary key.

Pandas allows us to specify the relationship we are expecting. It
will fail with an error if the relationship is a different kind.

For example, suppose we thought that “name” was the primary
key of the baby name tables.
df_1920.merge(df_2020, on="Name",

validate="one_to_one")

MergeError: Merge keys are not unique in either left or right dataset;
not a one-to-one merge

Errors are (sometimes) your friend. They can prevent you from
making even bigger mistakes!

16



1 Review

2 Types of Joins

3 Many-to-Many Joins

4 Summary

5 Reminders

17



What We’ve Learned Today

We’ve discussed two kinds of complications with joins:
• when a key doesn’t appear in one table (outer, left, right join)
• when a key appears multiple times in both tables
(many-to-many joins)

You should be equipped to do Assignment 7, due next Friday.
(Don’t forget Assignment 6, due tonight.)

18



1 Review

2 Types of Joins

3 Many-to-Many Joins

4 Summary

5 Reminders

19



Exam 2

• Exam 2 is in class next Monday. Same policy as last time (1
page of handwritten notes allowed).

• The exam includes material up to Monday (hierarchical
clustering). It does not include material from Wednesday or
today.

• I have posted a practice exam. Solutions are posted as well.

20



Final Project

• Sign up for a final project presentation here: [link to form].
• The final project files are due on Canvas on Wednesday
3/22 at 11:59 PM.

21

https://forms.gle/YhsSbUG4yN3XSzVaA

	Review
	Types of Joins
	Many-to-Many Joins
	Summary
	Reminders

