Lecture 12 Textual Data: Vector Space Model and TF-IDF

Dennis Sun Stanford University DATASCI / STATS 112

February 8, 2023

3 tf-idf

Textual Data

_			IS	rose	•••
0	"A Rose Is Still a Rose"	0	1	2	
1	"There is no there there." \Rightarrow	1	1	0	
2	"Rose is a rose is a rose is a rose."	2	3	4	

is

Which document is most similar to document O?

rose*

Using Euclidean distance, document | appears closer than document 2!

• • • • •

3 tf-idf

In the **vector space model**, documents are represented as *vectors* instead of points.

The **length of a vector** is its distance from the origin $\vec{0}$:

$$||\vec{v}|| = \sqrt{\sum_{j=1}^{D} v_j^2}.$$

The distance between two vectors is the angle between them:

$$d(\vec{v}, \vec{w}) = 1 - \cos \theta = 1 - \frac{\sup \text{ of } v_j \cdot w_j}{||\vec{v}|| \cdot ||\vec{w}||}.$$

Using cosine distance, document 2 now appears closer

Implementing the Vector Space Model

```
corpus = ["a rose is still a rose",
    "there is no there there",
    "rose is a rose is a rose is a rose"]
```

First, we use Pandas to get the term-frequency matrix.

```
import pandas as pd
from collections import Counter

tf = pd.DataFrame(
    [pd.Series(Counter(doc.split())) for doc in corpus],
).fillna(0)
tf
    a rose is still there no
0 2.0 2.0 1.0 1.0 0.0 0.0
```

	а	rose	is	still	there	no
0	2.0	2.0	1.0	1.0	0.0	0.0
1	0.0	0.0	1.0	0.0	3.0	1.0
2	3.0	4.0	3.0	0.0	0.0	0.0

Now we just have to implement the formula for cosine distance,

Implementing the Vector Space Model

		а	rose	is	still	there	no
+f -	0	2.0	2.0	1.0	1.0	0.0	0.0
UI —	1	0.0	0.0	1.0	0.0	3.0	1.0
	2	3.0	4.0	3.0	0.0	0.0	0.0

Now we just have to implement the formula for cosine distance.

$$d(\vec{v}, \vec{w}) = 1 - \frac{\operatorname{sum of } v_j \cdot w_j}{||\vec{v}|| \cdot ||\vec{w}||}$$

```
import numpy as np
def length(v):
    return np.sqrt((v ** 2).sum())
def cos_dist(v, w):
    return 1 - (v * w).sum() / (length(v) * length(w))
cos_dist(tf.loc[0], tf.loc[1]), cos_dist(tf.loc[0], tf.loc[2])
(0.9046537410754407, 0.07804555427071147)
```

Vector Space Model in Scikit-Learn

It's always easier to do it in Scikit-Learn.

from sklearn.feature_extraction.text import CountVectorizer

```
vec = CountVectorizer(token_pattern=r"(?u)\b\w+\b")
vec.fit(corpus)
tf_mat = vec.transform(corpus)
tf_mat.todense()
```

```
matrix([[2, 1, 0, 2, 1, 0],
[0, 1, 1, 0, 0, 3],
[3, 3, 0, 4, 0, 0]])
```

```
from sklearn.metrics import pairwise_distances
pairwise_distances(tf_mat[0, :], tf_mat[1:, :], metric="cosine")
```

```
array([[0.90465374, 0.07804555]])
```


tf-idf

So far, we've simply counted the **term frequency** tf(d, t): how many times each term t appears in each document d.

<u>Problem:</u> Common words like "is" or "the" tend to dominate because they have high counts.

We need to adjust for how common each word is:

1. Count the fraction of documents the term appears in:

$$df(t, D) = \frac{\# \text{ documents containing term } t}{\# \text{ documents}} = \frac{|d \in D : t \in d|}{|D|}$$

2. Invert and take a log to obtain inverse document frequency:

$$\operatorname{idf}(t, D) = 1 + \log \frac{1}{\operatorname{df}(t, D)}$$

3. Multiply tf by idf to get tf-idf:

$$tf-idf(d, t, D) = tf(d, t) \cdot idf(t, D).$$

Now we can use the **tf-idf matrix** just like we used the term-frequency matrix.

tf-idf by Hand

Previously, we saw the term-frequency matrix for this corpus:

Now let's calculate the tf-idf matrix!

1. Calculate the document frequencies:

$$df("is", D) = \frac{3}{3} = 1$$
 $df("rose", D) = \frac{2}{3}$

2. Calculate the inverse document frequencies:

$$idf("is", D) = 1 + \log 1 = 1$$
 $idf("rose", D) = 1 + \log 1.5$
 ≈ 1.176

3. Multiply tf by idf to get tf-idf:

	is	rose	
0	1	2.81	
1	1	0	
2	3	5.62	

tf-idf in Scikit-Learn

```
from sklearn.feature_extraction.text import TfidfVectorizer
# The options ensure that the numbers match our example above.
vec = TfidfVectorizer(smooth_idf=False, norm=None)
vec.fit(corpus)
tfidf_mat = vec.transform(corpus)
tfidf_mat.todense()
```

<pre>matrix([[1.</pre>	,	0. ,	1	2.81093022,	2.09861229	,	0.],
[1.	,	2.09861229,	(0. ,	0.	,	6.29583687	Ί,
[3.	,	0. ,	ļ	5.62186043,	0.	,	0.]])

Now we can use this tf-idf matrix just as we used the term frequency matrix!

```
pairwise_distances(tfidf_mat[0, :], tfidf_mat[1:, :], metric="cosine")
array([[0.95915143, 0.19106774]])
```

In-Class Exercise

Let's do another example in Colab.

3 tf-idf

Reminders

- I will start hosting office hours in-person and on Zoom.
- Keep working on Assignment 3! It is due Friday.
- Start looking for data sets for the final project. Come talk to me about your ideas!

