Hypergeometric(n,N1,N0) |
\displaystyle \frac{\binom{N_1}{x} \binom{N_0}{n-x}}{\binom{N}{n}} |
x=0, 1, \ldots, n |
n \frac{N_1}{N} |
n \frac{N_1}{N} \frac{N_0}{N} \left(1 - \frac{n-1}{N-1}\right) |
Binomial(n, N_1, N_0) |
\displaystyle \frac{\binom{n}{x} N_1^x N_0^{n-x}}{N^n} |
x=0, 1, \ldots, n |
n \frac{N_1}{N} |
n \frac{N_1}{N} \frac{N_0}{N} |
Binomial(n, p) |
\binom{n}{x} p^x (1-p)^{n-x} |
x=0, 1, \ldots, n |
np |
np(1-p) |
Geometric(p) |
(1-p)^{x-1} p |
x=1, 2, \ldots |
\frac{1}{p} |
\frac{1-p}{p^2} |
NegativeBinomial(r, p) |
\binom{x-1}{r-1} (1-p)^{x-r} p^r |
x=r, r+1, \ldots |
\frac{r}{p} |
\frac{r(1-p)}{p^2} |
Poisson(\mu) |
e^{-\mu} \frac{\mu^x}{x!} |
x=0, 1, 2, \ldots |
\mu |
\mu |