A Distribution Tables

A.1 Discrete Distributions

Distribution of \(X\) \(f(x)\) Support \(E[X]\) \(\text{Var}[X]\)
Hypergeometric\((n, N_1, N_0)\) \(\displaystyle \frac{\binom{N_1}{x} \binom{N_0}{n-x}}{\binom{N}{n}}\) \(x=0, 1, \ldots, n\) \(n \frac{N_1}{N}\) \(n \frac{N_1}{N} \frac{N_0}{N} \left(1 - \frac{n-1}{N-1}\right)\)
Binomial\((n, N_1, N_0)\) \(\displaystyle \frac{\binom{n}{x} N_1^x N_0^{n-x}}{N^n}\) \(x=0, 1, \ldots, n\) \(n \frac{N_1}{N}\) \(n \frac{N_1}{N} \frac{N_0}{N}\)
Binomial\((n, p)\) \(\binom{n}{x} p^x (1-p)^{n-x}\) \(x=0, 1, \ldots, n\) \(np\) \(np(1-p)\)
Geometric\((p)\) \((1-p)^{x-1} p\) \(x=1, 2, \ldots\) \(\frac{1}{p}\) \(\frac{1-p}{p^2}\)
NegativeBinomial\((r, p)\) \(\binom{x-1}{r-1} (1-p)^{x-r} p^r\) \(x=r, r+1, \ldots\) \(\frac{r}{p}\) \(\frac{r(1-p)}{p^2}\)
Poisson\((\mu)\) \(e^{-\mu} \frac{\mu^x}{x!}\) \(x=0, 1, 2, \ldots\) \(\mu\) \(\mu\)

A.2 Continuous Distributions

Distribution of \(X\) \(f(x)\) Support \(E[X]\) \(\text{Var}[X]\)
Uniform\((a, b)\) \(\frac{1}{b-a}\) \(a < x < b\) \(\frac{a+b}{2}\) \(\frac{(b-a)^2}{12}\)
Exponential\((\lambda)\) \(\lambda e^{-\lambda x}\) \(0 < x < \infty\) \(\frac{1}{\lambda}\) \(\frac{1}{\lambda^2}\)
Gamma\((r, \lambda)\) \(\frac{\lambda^r}{(r-1)!}x^{r-1} e^{-\lambda x}\) \(0 < x < \infty\) \(\frac{r}{\lambda}\) \(\frac{r}{\lambda^2}\)
Normal\((\mu, \sigma)\) \(\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{2\sigma^2}}\) \(-\infty < x < \infty\) \(\mu\) \(\sigma^2\)