Hypergeometric\((n, N_1, N_0)\) |
\(\displaystyle \frac{\binom{N_1}{x} \binom{N_0}{n-x}}{\binom{N}{n}}\) |
\(x=0, 1, \ldots, n\) |
\(n \frac{N_1}{N}\) |
\(n \frac{N_1}{N} \frac{N_0}{N} \left(1 - \frac{n-1}{N-1}\right)\) |
Binomial\((n, N_1, N_0)\) |
\(\displaystyle \frac{\binom{n}{x} N_1^x N_0^{n-x}}{N^n}\) |
\(x=0, 1, \ldots, n\) |
\(n \frac{N_1}{N}\) |
\(n \frac{N_1}{N} \frac{N_0}{N}\) |
Binomial\((n, p)\) |
\(\binom{n}{x} p^x (1-p)^{n-x}\) |
\(x=0, 1, \ldots, n\) |
\(np\) |
\(np(1-p)\) |
Geometric\((p)\) |
\((1-p)^{x-1} p\) |
\(x=1, 2, \ldots\) |
\(\frac{1}{p}\) |
\(\frac{1-p}{p^2}\) |
NegativeBinomial\((r, p)\) |
\(\binom{x-1}{r-1} (1-p)^{x-r} p^r\) |
\(x=r, r+1, \ldots\) |
\(\frac{r}{p}\) |
\(\frac{r(1-p)}{p^2}\) |
Poisson\((\mu)\) |
\(e^{-\mu} \frac{\mu^x}{x!}\) |
\(x=0, 1, 2, \ldots\) |
\(\mu\) |
\(\mu\) |