D Fourier Tables

D.1 Continuous-Time Fourier Transforms

\[ G(f) = \int_{-\infty}^\infty g(t) e^{-j2\pi f t}\,dt,\ \ -\infty < f < \infty \]

Time-Domain \(g(t)\) Frequency-Domain \(G(f) = \mathscr{F}[g(t)]\)
\(1\) \(\delta(f)\)
\(u(t) \overset{\text{def}}{=} \begin{cases} 1 & t \geq 0 \\ 0 & t < 0 \end{cases}\) \(\displaystyle\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}\)
\(\cos(2\pi f_0 t)\) \(\frac{1}{2}(\delta(f - f_0) + \delta(f + f_0))\)
\(\sin(2\pi f_0 t)\) \(\frac{1}{2j}(\delta(f - f_0) - \delta(f + f_0))\)
\(e^{-t}u(t)\) \(\displaystyle\frac{1}{1 + j2\pi f}\)
\(e^{-|t|}\) \(\displaystyle\frac{2}{1 + (2\pi f)^2}\)
\(e^{-\pi t^2}\) \(e^{-\pi f^2}\)
\(\text{rect}(t) \overset{\text{def}}{=} \begin{cases} 1 & |t| \leq 0.5 \\ 0 & |t| > 0.5 \end{cases}\) \(\displaystyle\text{sinc}(f) \overset{\text{def}}{=} \frac{\sin(\pi f)}{\pi f}\)
\(\text{tri}(t) \overset{\text{def}}{=} \begin{cases} 1 - |t| & |t| \leq 1 \\ 0 & |t| > 1 \end{cases}\) \(\text{sinc}^2(f)\)

D.2 Discrete-Time Fourier Transforms

Note that \(f\) here denotes normalized frequency (cycles/sample). \[ G(f) = \sum_{n=-\infty}^\infty g[n] e^{-j2\pi f n},\ \ -0.5 < f < 0.5 \]

Time-Domain \(g[n]\) Frequency-Domain \(G(f) = \mathscr{F}[g[n]]\) Restrictions
\(1\) \(\delta(f)\)
\(\delta[n]\) \(1\)
\(\cos(2\pi f_0 n)\) \(\frac{1}{2}(\delta(f - f_0) + \delta(f + f_0))\) \(-0.5 < f < 0.5\)
\(\sin(2\pi f_0 n)\) \(\frac{1}{2j}(\delta(f - f_0) - \delta(f + f_0))\) \(-0.5 < f < 0.5\)
\(\alpha^{|n|}\) \(\displaystyle\frac{1 - \alpha^{2}}{1 + \alpha^{2} - 2\alpha \cos(2\pi f)}\) \(|\alpha| < 1\)
\(\alpha^{n} u[n]\) \(\displaystyle\frac{1}{1 - \alpha e^{-j2\pi f}}\) \(|\alpha| < 1\)

D.3 Fourier Properties

Suppose \(g\), \(g_1\), and \(g_2\) are time-domain signals with Fourier transforms \(G\), \(G_1\), and \(G_2\), respectively.

Property When It Applies Time-Domain Frequency-Domain
Linearity continuous-time, discrete-time \(a g_1(t) + b g_2(t)\) \(\overset{\mathscr{F}}{\longleftrightarrow}\) \(a G_1(f) + b G_2(f)\)
Scaling continuous-time only \(g(at)\) \(\overset{\mathscr{F}}{\longleftrightarrow}\) \(\frac{1}{a} G\left(\frac{f}{a}\right)\)
Shifting continuous-time, discrete-time \(g(t + b)\) \(\overset{\mathscr{F}}{\longleftrightarrow}\) \(G(f) e^{j2\pi b f}\)
Convolution continuous-time, discrete-time \((g_1 * g_2)(t)\) \(\overset{\mathscr{F}}{\longleftrightarrow}\) \(G_1(f) \cdot G_2(f)\)
Reversal continuous-time, discrete-time \(g(-t)\) \(\overset{\mathscr{F}}{\longleftrightarrow}\) \(G(-f)\)
DC Offset continuous-time, discrete-time \(\int_{-\infty}^\infty g(t)\,dt\) \(\overset{\mathscr{F}}{\longleftrightarrow}\) \(G(0)\)