D Fourier Tables
D.1 Continuous-Time Fourier Transforms
\[ G(f) = \int_{-\infty}^\infty g(t) e^{-j2\pi f t}\,dt,\ \ -\infty < f < \infty \]
Time-Domain \(g(t)\) | Frequency-Domain \(G(f) = \mathscr{F}[g(t)]\) |
---|---|
\(1\) | \(\delta(f)\) |
\(u(t) \overset{\text{def}}{=} \begin{cases} 1 & t \geq 0 \\ 0 & t < 0 \end{cases}\) | \(\displaystyle\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}\) |
\(\cos(2\pi f_0 t)\) | \(\frac{1}{2}(\delta(f - f_0) + \delta(f + f_0))\) |
\(\sin(2\pi f_0 t)\) | \(\frac{1}{2j}(\delta(f - f_0) - \delta(f + f_0))\) |
\(e^{-t}u(t)\) | \(\displaystyle\frac{1}{1 + j2\pi f}\) |
\(e^{-|t|}\) | \(\displaystyle\frac{2}{1 + (2\pi f)^2}\) |
\(e^{-\pi t^2}\) | \(e^{-\pi f^2}\) |
\(\text{rect}(t) \overset{\text{def}}{=} \begin{cases} 1 & |t| \leq 0.5 \\ 0 & |t| > 0.5 \end{cases}\) | \(\displaystyle\text{sinc}(f) \overset{\text{def}}{=} \frac{\sin(\pi f)}{\pi f}\) |
\(\text{tri}(t) \overset{\text{def}}{=} \begin{cases} 1 - |t| & |t| \leq 1 \\ 0 & |t| > 1 \end{cases}\) | \(\text{sinc}^2(f)\) |
D.2 Discrete-Time Fourier Transforms
Note that \(f\) here denotes normalized frequency (cycles/sample). \[ G(f) = \sum_{n=-\infty}^\infty g[n] e^{-j2\pi f n},\ \ -0.5 < f < 0.5 \]
Time-Domain \(g[n]\) | Frequency-Domain \(G(f) = \mathscr{F}[g[n]]\) | Restrictions |
---|---|---|
\(1\) | \(\delta(f)\) | |
\(\delta[n]\) | \(1\) | |
\(\cos(2\pi f_0 n)\) | \(\frac{1}{2}(\delta(f - f_0) + \delta(f + f_0))\) | \(-0.5 < f < 0.5\) |
\(\sin(2\pi f_0 n)\) | \(\frac{1}{2j}(\delta(f - f_0) - \delta(f + f_0))\) | \(-0.5 < f < 0.5\) |
\(\alpha^{|n|}\) | \(\displaystyle\frac{1 - \alpha^{2}}{1 + \alpha^{2} - 2\alpha \cos(2\pi f)}\) | \(|\alpha| < 1\) |
\(\alpha^{n} u[n]\) | \(\displaystyle\frac{1}{1 - \alpha e^{-j2\pi f}}\) | \(|\alpha| < 1\) |
D.3 Fourier Properties
Suppose \(g\), \(g_1\), and \(g_2\) are time-domain signals with Fourier transforms \(G\), \(G_1\), and \(G_2\), respectively.
Property | When It Applies | Time-Domain | Frequency-Domain | |
---|---|---|---|---|
Linearity | continuous-time, discrete-time | \(a g_1(t) + b g_2(t)\) | \(\overset{\mathscr{F}}{\longleftrightarrow}\) | \(a G_1(f) + b G_2(f)\) |
Scaling | continuous-time only | \(g(at)\) | \(\overset{\mathscr{F}}{\longleftrightarrow}\) | \(\frac{1}{a} G\left(\frac{f}{a}\right)\) |
Shifting | continuous-time, discrete-time | \(g(t + b)\) | \(\overset{\mathscr{F}}{\longleftrightarrow}\) | \(G(f) e^{j2\pi b f}\) |
Convolution | continuous-time, discrete-time | \((g_1 * g_2)(t)\) | \(\overset{\mathscr{F}}{\longleftrightarrow}\) | \(G_1(f) \cdot G_2(f)\) |
Reversal | continuous-time, discrete-time | \(g(-t)\) | \(\overset{\mathscr{F}}{\longleftrightarrow}\) | \(G(-f)\) |
DC Offset | continuous-time, discrete-time | \(\int_{-\infty}^\infty g(t)\,dt\) | \(\overset{\mathscr{F}}{\longleftrightarrow}\) | \(G(0)\) |