Appendix A — Distribution Tables

This appendix provides comprehensive tables of all the named distributions discussed in this book. Each distribution entry also includes a reference to the proposition, example, or exercise where the relevant formula was derived.

A.1 Discrete Distributions

Distribution PMF \(f(x)\) Expected Value Variance MGF \(M(t)\)
\(\text{Bernoulli}(p)\) \(\displaystyle\begin{cases} p & x = 1 \\ 1-p & x = 0 \end{cases}\)
Definition 8.5
\(\displaystyle p\)
Example 14.3
\(\displaystyle p(1-p)\)
Example 15.5
\(\displaystyle 1-p+pe^t\)
Exercise 34.1
\(\text{Binomial}(n,p)\) \(\displaystyle\binom{n}{x}p^x(1-p)^{n-x};\)
\(x = 0,1,\ldots,n\)
Definition 8.6
\(\displaystyle np\)
Proposition 9.2, Example 14.3
\(\displaystyle np(1-p)\)
Proposition 11.3, Example 15.5
\(\displaystyle (1-p+pe^t)^n\)
Exercise 34.1
\(\text{Geometric}(p)\) \(\displaystyle p(1-p)^{x-1};\)
\(x = 1,2,\ldots\)
Definition 8.7
\(\displaystyle\frac{1}{p}\)
Example 9.7
\(\displaystyle\frac{1-p}{p^2}\)
Proposition 12.2
\(\displaystyle\frac{pe^t}{1-(1-p)e^t};\)
\(t < -\ln(1-p)\)
Exercise 34.4
\(\text{NegativeBinomial}\)
\((r,p)\)
\(\displaystyle\binom{x-1}{r-1}p^r(1-p)^{x-r};\)
\(x = r,r+1,\ldots\)
Definition 12.2
\(\displaystyle\frac{r}{p}\)
Proposition 12.2
\(\displaystyle\frac{r(1-p)}{p^2}\)
Proposition 12.2
\(\displaystyle\left(\frac{pe^t}{1-(1-p)e^t}\right)^r;\)
\(t < -\ln(1-p)\)
Exercise 34.4
\(\text{Poisson}(\mu)\) \(\displaystyle\frac{e^{-\mu}\mu^x}{x!};\,x = 0,1,2,\ldots\)
Definition 12.3
\(\displaystyle\mu\)
Proposition 12.3
\(\displaystyle\mu\)
Proposition 12.3
\(\displaystyle e^{\mu(e^t-1)}\)
Example 34.1
\(\text{Hypergeometric}\)
\((n,M,N)\)
\(\displaystyle\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}};\)
\(x = 0, 1, \dots, n\)
Definition 12.1
\(\displaystyle\frac{nM}{N}\)
Proposition 12.1, Example 14.4
\(\frac{nM}{N}\left(1-\frac{M}{N}\right)\frac{N-n}{N-1}\)
Proposition 12.1, Example 15.6
no simple expression

A.2 Continuous Distributions

Distribution PDF \(f(x)\) Expected Value Variance MGF \(M(t)\)
\(\text{Uniform}(a,b)\) \(\displaystyle\frac{1}{b-a};\, a < x < b\)
Definition 22.1
\(\displaystyle\frac{a+b}{2}\)
Proposition 22.2
\(\displaystyle\frac{(b-a)^2}{12}\)
Proposition 22.2
\(\displaystyle\frac{e^{bt}-e^{at}}{(b-a)t}\)
Exercise 34.2
\(\text{Exponential}(\lambda)\) \(\displaystyle\lambda e^{-\lambda x};\, x > 0\)
Definition 22.2
\(\displaystyle\frac{1}{\lambda}\)
Proposition 22.4
\(\displaystyle\frac{1}{\lambda^2}\)
Proposition 22.4
\(\displaystyle\frac{\lambda}{\lambda-t}; t < \lambda\)
Example 34.3
\(\text{Normal}(\mu,\sigma^2)\) \(\displaystyle\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}};\)
\(-\infty < x < \infty\)
Definition 22.4
\(\displaystyle\mu\)
Proposition 22.6
\(\displaystyle\sigma^2\)
Proposition 22.6
\(\displaystyle e^{\mu t+\frac{\sigma^2t^2}{2}}\)
Example 34.2
\(\text{Gamma}(\alpha,\lambda)\) \(\displaystyle\frac{\lambda^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x};\, x > 0\)
Definition 39.2
\(\displaystyle\frac{\alpha}{\lambda}\)
Proposition 39.2
\(\displaystyle\frac{\alpha}{\lambda^2}\)
Proposition 39.2
\(\displaystyle\left(\frac{\lambda}{\lambda-t}\right)^\alpha;\, t < \lambda\)
Proposition 39.3
\(\text{Chi-square}(k)\) \(\displaystyle\frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2-1}e^{-x/2};\)
\(x > 0\)
Note A.1
\(\displaystyle k\)
Note A.1
\(\displaystyle 2k\)
Note A.1
\(\displaystyle\left(\frac{1}{1-2t}\right)^{k/2};\, t < \frac{1}{2}\)
Note A.1
\(\text{Beta}(\alpha,\beta)\) \(\displaystyle\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1};\)
\(0 < x < 1\)
Definition 42.1
\(\displaystyle\frac{\alpha}{\alpha+\beta}\)
Proposition 42.2
\(\displaystyle\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\)
Proposition 42.2
no simple expression
Note A.1

By Proposition 39.5, the \(\text{Chi-square}(k)\) distribution is the \(\text{Gamma}(\alpha=\frac{k}{2}, \lambda=\frac{1}{2})\) distribution, so the expected value, variance, and MGF follow from the formulas for the gamma.